BibTex RIS Kaynak Göster

Synthesis, Characterization and Chromatographic Applications of Antimicrobial Cryogels

Yıl 2017, Cilt: 45 Sayı: 2, 187 - 195, 01.06.2017

Öz

Antibacterial materials, in the last years, have become an important center of attention against diseases be- cause of pathogenic bacteria. Within the scope of this study, antimicrobial poly 2-hydroxyethyl methacrylate- glycidyl methacrylate , poly HEMA-GMA , cryogels were synthesized and Ag I ions were immobilized to the structure through the amino acid L-Arginine. For characterization of the structure; swelling test, Fourier transform infrared FT-IR spectroscopy, scanning electron microscopy SEM , surface area BET , elemental analysis and ICP-OES methods were performed. The L-Arginine amino acid was used as an Ag I chelating ligand and the melittin protein adsorption capacity of cryogels was determined as 173.9 mg/g cryogel.

Kaynakça

  • J. Alexander. History of the medical use of silver. Surg, Infect. (Larchmt), 10 (2009) 289–292.
  • S. Kittler, C. Greulich, J. Diendorf, M. Koller, M. Epple. Toxicity of Silver Nanoparticles Increases during Storage Because of Slow Dissolution under Release of Silver Ions Chem. Mater., 22 (2010) 4548–4554.
  • C. Greulich, D. Braun, A. Peetsch, J. Diendorf, B. Siebers, M. Epple, M. Koller. The toxic effect of silver ions and silver nanoparticles towards bacteria and human cells occurs in the same concentration range. RSC Advances, 2 (2012) 6981–6987.
  • S. Eckhardt, P.S. Brunetto, J. Gagnon, M. Priebe, B. Giese, K.M. Fromm. Nanobio silver: its interactions with peptides and bacteria, and its uses in medicine. Chem. Rev., 113 (2013) 4708–4754.
  • M. Rai, A. Yadav, A. Gade. Silver nanoparticles as a new generation of antimicrobials. Biotechnol. Adv., 27 (2009) 76–83.
  • L. Rizzello, P. Pompa. Nanosilver-based antibacterial drugs and devices: Mechanisms, methodological drawbacks, and guidelines. Chem. Soc. Rev., 43 (2014) 1501–1518.
  • S. Chernousova, M. Epple. Silver as antibacterial agent: ion, nanoparticle, and metal. Chem. Int. Ed., 52 (2013) 1636–1653.
  • Z.J. Lin, J. Lu, M. Hong, R. Cao. Metal-organic frameworks based on flexible ligands (FL-MOFs): structures and applications. Chem. Soc. Rev., 43 (2014) 5867-5895.
  • T.R. Cook, Y.R. Zheng, P.J. Stang. Metal-organic frameworks and self-assembled supramolecular coordination complexes: comparing and contrasting the design, synthesis, and functionality of metal- organic materials. Chem. Rev., 113 (2013) 734-777.
  • J.R. Li, Q. Yu, E.C. Sanudo, Y. Tao, X.H. Bu. An azido- Cu(II)-triazolate complex with utp-type topological network, showing spin-canted antiferromagnetism. Chem. Commun., 25 (2007) 2602-2604.
  • J. Jiang, O.M. Yaghi. Brİnsted acidity in metal-organic frameworks. Chem. Rev., 115 (2015) 6966-6997.
  • L.B. Sun, X.Q. Liu, H.C. Zhou. Design and fabrication of mesoporous heterogeneous basic catalysts. Chem. Soc. Rev., 44 (2015) 5092-5147.
  • M.Y. Masoomi, A. Morsali. Applications of metal– organic coordination polymers as precursors for preparation of nano-materials. Coord. Chem. Rev., 256 (2012) 2921-2943.
  • F.M. Plieva, I.Y. Galaev, B. Mattiasson, Macroporous gels prepared at subzero temperatures as novel materials for chromatography of particulate-containing fluids and cell culture applications, J. Sep. Sci., 30 (2007) 1657–1671.
  • M.U. Kahveci, Z. Beyazkilic¸ , Y. Yagci, Polyacrylamide cryogels by photoinitiated free radical polymerization, J. Polym. Sci: Part A: Polym. Chem., 48 (2010) 4989– 4994.
  • S. Reichelt, C. Abe, S. Hainich, W. Knolle, U. Decker, A. Prager, R. Konieczny, Electron-beam derived polymeric cryogels, Soft Matter, 9 (2013) 2484–2492.
  • S. Hajizadeh, H. Kirsebom, A. Leistner, B. Mattiasson, Composite cryogel with immobilized concanavalin A for affinity chromatography of glycoproteins, J. Sep. Sci., 35 (2012) 2978–2985.
  • F.X. Gao, X.L. Zhao, X.W. He, W.Y. Li, Y.K. Zhang, A pH and temperature dual-responsive macroporous molecularly imprinted cryogel for enhanced recognition capability towards ovalbumin, Anal. Methods, 5 (2013) 6700–6708.
  • B. Mattiasson, A. Kumar, Yu Galaev, Macroporous Polymers: Production Properties and Biotechnological/ Biomedical Applications, CRC Press, 2009.
  • K.J. Yao, J.X. Yun, S.C. Shen, F. Chen, In-situ graft- polymerization preparation of cation-exchange supermacroporous cryogel with sulfo groups in glass columns, J. Chromatogr. A, 1157 (2007) 246–251.
  • M. Andaç, F.M. Plieva, A. Denizli, I.Y. Galaev, B. 33. G.R. Jespersen, A.L. Nielsen, F. Matthiesen, H.S. Mattiasson, Poly(hydroxyethyl methacrylate)-based macroporous hydrogels with disulfide cross-linker, Macromol. Chem. Phys., 209 (2008) 577–584.
  • T. Dispinar, W.V. Camp, L.J. De Cock, B.G. De Geest, F.E. Du Prez, Redox-responsive degradable PEG cryogels as potential cell scaffolds in tissue engineering, Macromol. Biosci., 12 (2012) 383–394.
  • Y. Hwang, C. Zhang, S. Varghese, Poly(ethylene glycol) cryogels as potential cell scaffolds: effect of polymerization conditions on cryogel microstructure and properties, J. Mater. Chem., 20 (2010) 345–351.
  • S. Reichelt, J. Becher, J. Weisser, A. Prager, U. Decker, S. Möller, A. Berg, M. Schnabelrauch, Biocompatible polysaccharide-based cryogels, Mater. Sci. Eng. C, 35 (2014) 164–170.
  • P. Arvidsson, F.M. Plieva, I.N. Savina, V.I. Lozinsky, S. Fexby, L. Bülow, I.Yu. Galaev, B. Mattiasson, Chromatography of microbial cells using continuous supermacroporous affinity and ion-exchange columns, J. Chromatogr. A, 977 (2002) 27–38.
  • C. Aydogan, M. Andac¸ , E. Bayram, R. Say, A. Denizli, Molecularly imprinted cryogel for l-glutamic acid separation, Biotechnol. Prog., 28 (2012) 459–466.
  • M.B. Dainiak, I.Yu. Galaev, A. Kumar, F.M. Plieva, B. Mattiasson, Chromatography of living cells using supermacroporous hydrogels, cryogels, Adv. Biochem. Eng. Biotechnol., 106 (2007) 101–127.
  • G. Ertürk, B. Mattiasson, Cryogels-versatile tools in bioseparation, J. Chromatogr., A 1357 (2014) 24–35.
  • A. Hanora, I.N. Savina, F.M. Plieva, V.A. Izumrudov, B. Mattiasson, I.Y. Galaev, Direct capture of plasmid DNA from non-clarified bacterial lysate using polycation- grafted monoliths, J. Biotechnol., 123 (2006) 343–355.
  • A. Kumar, F.M. Plieva, I.Yu. Galaev, B.M. Mattiasson, Affinity fractionation of lymphocytes using a monolithic cryogel, J. Immunol. Methods, 283 (2003) 185–194.
  • L. Wang, S.C. Shen, X.J. He, J.X. Yun, K. Yao, S.J. Yao, Adsorption and elution behaviors of bovine serum albumin in metal-chelated affinity cryogel beds, Biochem. Eng. J., 42 (2008) 237–242.
  • K.J. Yao, J.X. Yun, S.C. Shen, L.H. Wang, F. Chen, X.M. Yu, Protein adsorption in supermacroporous cryogels with embedded nanoparticles, Biochem. Eng. J., 36 (2007) 139–146. Andersen, H. Kirsebom, Dual application of cryogel as solid support in peptide synthesis and subsequent protein-capture, J. Appl. Polym. Sci., 130 (2013) 4383– 4391.
  • A. Kumar, V. Bansal, J. Andersson, P.K. Roychoudhury, B. Mattiasson, Supermacroporous cryogel matrix for integrated protein isolation immobilized metal affinity chromatographic purification of urokinase from cell culture broth of a human kidney cell line, J. Chromatogr. A, 1103 (2006) 35–42.
  • V.W.M. Lee, H. Li, T.C. Lau, R. Guevremont, K.W.M. Siu. Relative silver(I) ion binding energies of α-amino acids: a determination by means of the kinetic method. Journal of the American Society for Mass Spectrometry, 9 (1998) 760–766.
  • R. Schwalbe, L.S. Moore, A.C. Goodwin, Antimicrobial Susceptibility Testing Protocols. CRC Press, pp. 75-79.
  • X. Wu, A.K. Singh, X. Wu, Y. Lyu, A.K. Bhunia, G. Narsimhan, Characterization of antimicrobial activity against Listeria and cytotoxicity of native melittin and its mutant variants, Colloids and Surfaces B: Biointerfaces, 143 (2016) 194–205.
  • B. Morzyk-Ociepa, D. Michalska, Vibrational spectra of 1-methyluracilate complex with silver(I) and theoretical studies of the 1-MeU anion, Spectrochimica Acta Part A, 59 (2003) 1247-1254.

Antimikrobiyal Kriyojellerin Sentezi, Karakterizasyonu ve Kromatografik Uygulamaları

Yıl 2017, Cilt: 45 Sayı: 2, 187 - 195, 01.06.2017

Öz

P atojenik bakterilerin sebebiyet verdiği hastalıklara karşı antibakteriyel malzemeler son yılllarda olduça önemli bir ilgi merkezi haline gelmiştir. Bu çalışma kapsamında antimikrobiyal poli 2-hidroksietil metakrilat-glisidil metakrilat , pol HEMA-GMA , kriyojeller sentezlenmiş ve yapıya L-Arjinin aminoasidi üzerinden Ag I iyonları immobilize edilmiştir. Yapının karakterizasyonu için; şişme testi, Frouer dönüşümlü infrared FT-IR spektroskopisi, taramalı elektron mikroskobu SEM , yüzey alanı BET , elementel ve ICP-OES analizleri yapılmıştır. L-Arjinin amino asidinden Ag I şelatlayıcı ligand olarak yararlanılmış ve kriyojellerin melittin proteini için adsorpsiyon kapasitesi 173.9 mg protein/g kriyojel olarak tespit edilmiştir

Kaynakça

  • J. Alexander. History of the medical use of silver. Surg, Infect. (Larchmt), 10 (2009) 289–292.
  • S. Kittler, C. Greulich, J. Diendorf, M. Koller, M. Epple. Toxicity of Silver Nanoparticles Increases during Storage Because of Slow Dissolution under Release of Silver Ions Chem. Mater., 22 (2010) 4548–4554.
  • C. Greulich, D. Braun, A. Peetsch, J. Diendorf, B. Siebers, M. Epple, M. Koller. The toxic effect of silver ions and silver nanoparticles towards bacteria and human cells occurs in the same concentration range. RSC Advances, 2 (2012) 6981–6987.
  • S. Eckhardt, P.S. Brunetto, J. Gagnon, M. Priebe, B. Giese, K.M. Fromm. Nanobio silver: its interactions with peptides and bacteria, and its uses in medicine. Chem. Rev., 113 (2013) 4708–4754.
  • M. Rai, A. Yadav, A. Gade. Silver nanoparticles as a new generation of antimicrobials. Biotechnol. Adv., 27 (2009) 76–83.
  • L. Rizzello, P. Pompa. Nanosilver-based antibacterial drugs and devices: Mechanisms, methodological drawbacks, and guidelines. Chem. Soc. Rev., 43 (2014) 1501–1518.
  • S. Chernousova, M. Epple. Silver as antibacterial agent: ion, nanoparticle, and metal. Chem. Int. Ed., 52 (2013) 1636–1653.
  • Z.J. Lin, J. Lu, M. Hong, R. Cao. Metal-organic frameworks based on flexible ligands (FL-MOFs): structures and applications. Chem. Soc. Rev., 43 (2014) 5867-5895.
  • T.R. Cook, Y.R. Zheng, P.J. Stang. Metal-organic frameworks and self-assembled supramolecular coordination complexes: comparing and contrasting the design, synthesis, and functionality of metal- organic materials. Chem. Rev., 113 (2013) 734-777.
  • J.R. Li, Q. Yu, E.C. Sanudo, Y. Tao, X.H. Bu. An azido- Cu(II)-triazolate complex with utp-type topological network, showing spin-canted antiferromagnetism. Chem. Commun., 25 (2007) 2602-2604.
  • J. Jiang, O.M. Yaghi. Brİnsted acidity in metal-organic frameworks. Chem. Rev., 115 (2015) 6966-6997.
  • L.B. Sun, X.Q. Liu, H.C. Zhou. Design and fabrication of mesoporous heterogeneous basic catalysts. Chem. Soc. Rev., 44 (2015) 5092-5147.
  • M.Y. Masoomi, A. Morsali. Applications of metal– organic coordination polymers as precursors for preparation of nano-materials. Coord. Chem. Rev., 256 (2012) 2921-2943.
  • F.M. Plieva, I.Y. Galaev, B. Mattiasson, Macroporous gels prepared at subzero temperatures as novel materials for chromatography of particulate-containing fluids and cell culture applications, J. Sep. Sci., 30 (2007) 1657–1671.
  • M.U. Kahveci, Z. Beyazkilic¸ , Y. Yagci, Polyacrylamide cryogels by photoinitiated free radical polymerization, J. Polym. Sci: Part A: Polym. Chem., 48 (2010) 4989– 4994.
  • S. Reichelt, C. Abe, S. Hainich, W. Knolle, U. Decker, A. Prager, R. Konieczny, Electron-beam derived polymeric cryogels, Soft Matter, 9 (2013) 2484–2492.
  • S. Hajizadeh, H. Kirsebom, A. Leistner, B. Mattiasson, Composite cryogel with immobilized concanavalin A for affinity chromatography of glycoproteins, J. Sep. Sci., 35 (2012) 2978–2985.
  • F.X. Gao, X.L. Zhao, X.W. He, W.Y. Li, Y.K. Zhang, A pH and temperature dual-responsive macroporous molecularly imprinted cryogel for enhanced recognition capability towards ovalbumin, Anal. Methods, 5 (2013) 6700–6708.
  • B. Mattiasson, A. Kumar, Yu Galaev, Macroporous Polymers: Production Properties and Biotechnological/ Biomedical Applications, CRC Press, 2009.
  • K.J. Yao, J.X. Yun, S.C. Shen, F. Chen, In-situ graft- polymerization preparation of cation-exchange supermacroporous cryogel with sulfo groups in glass columns, J. Chromatogr. A, 1157 (2007) 246–251.
  • M. Andaç, F.M. Plieva, A. Denizli, I.Y. Galaev, B. 33. G.R. Jespersen, A.L. Nielsen, F. Matthiesen, H.S. Mattiasson, Poly(hydroxyethyl methacrylate)-based macroporous hydrogels with disulfide cross-linker, Macromol. Chem. Phys., 209 (2008) 577–584.
  • T. Dispinar, W.V. Camp, L.J. De Cock, B.G. De Geest, F.E. Du Prez, Redox-responsive degradable PEG cryogels as potential cell scaffolds in tissue engineering, Macromol. Biosci., 12 (2012) 383–394.
  • Y. Hwang, C. Zhang, S. Varghese, Poly(ethylene glycol) cryogels as potential cell scaffolds: effect of polymerization conditions on cryogel microstructure and properties, J. Mater. Chem., 20 (2010) 345–351.
  • S. Reichelt, J. Becher, J. Weisser, A. Prager, U. Decker, S. Möller, A. Berg, M. Schnabelrauch, Biocompatible polysaccharide-based cryogels, Mater. Sci. Eng. C, 35 (2014) 164–170.
  • P. Arvidsson, F.M. Plieva, I.N. Savina, V.I. Lozinsky, S. Fexby, L. Bülow, I.Yu. Galaev, B. Mattiasson, Chromatography of microbial cells using continuous supermacroporous affinity and ion-exchange columns, J. Chromatogr. A, 977 (2002) 27–38.
  • C. Aydogan, M. Andac¸ , E. Bayram, R. Say, A. Denizli, Molecularly imprinted cryogel for l-glutamic acid separation, Biotechnol. Prog., 28 (2012) 459–466.
  • M.B. Dainiak, I.Yu. Galaev, A. Kumar, F.M. Plieva, B. Mattiasson, Chromatography of living cells using supermacroporous hydrogels, cryogels, Adv. Biochem. Eng. Biotechnol., 106 (2007) 101–127.
  • G. Ertürk, B. Mattiasson, Cryogels-versatile tools in bioseparation, J. Chromatogr., A 1357 (2014) 24–35.
  • A. Hanora, I.N. Savina, F.M. Plieva, V.A. Izumrudov, B. Mattiasson, I.Y. Galaev, Direct capture of plasmid DNA from non-clarified bacterial lysate using polycation- grafted monoliths, J. Biotechnol., 123 (2006) 343–355.
  • A. Kumar, F.M. Plieva, I.Yu. Galaev, B.M. Mattiasson, Affinity fractionation of lymphocytes using a monolithic cryogel, J. Immunol. Methods, 283 (2003) 185–194.
  • L. Wang, S.C. Shen, X.J. He, J.X. Yun, K. Yao, S.J. Yao, Adsorption and elution behaviors of bovine serum albumin in metal-chelated affinity cryogel beds, Biochem. Eng. J., 42 (2008) 237–242.
  • K.J. Yao, J.X. Yun, S.C. Shen, L.H. Wang, F. Chen, X.M. Yu, Protein adsorption in supermacroporous cryogels with embedded nanoparticles, Biochem. Eng. J., 36 (2007) 139–146. Andersen, H. Kirsebom, Dual application of cryogel as solid support in peptide synthesis and subsequent protein-capture, J. Appl. Polym. Sci., 130 (2013) 4383– 4391.
  • A. Kumar, V. Bansal, J. Andersson, P.K. Roychoudhury, B. Mattiasson, Supermacroporous cryogel matrix for integrated protein isolation immobilized metal affinity chromatographic purification of urokinase from cell culture broth of a human kidney cell line, J. Chromatogr. A, 1103 (2006) 35–42.
  • V.W.M. Lee, H. Li, T.C. Lau, R. Guevremont, K.W.M. Siu. Relative silver(I) ion binding energies of α-amino acids: a determination by means of the kinetic method. Journal of the American Society for Mass Spectrometry, 9 (1998) 760–766.
  • R. Schwalbe, L.S. Moore, A.C. Goodwin, Antimicrobial Susceptibility Testing Protocols. CRC Press, pp. 75-79.
  • X. Wu, A.K. Singh, X. Wu, Y. Lyu, A.K. Bhunia, G. Narsimhan, Characterization of antimicrobial activity against Listeria and cytotoxicity of native melittin and its mutant variants, Colloids and Surfaces B: Biointerfaces, 143 (2016) 194–205.
  • B. Morzyk-Ociepa, D. Michalska, Vibrational spectra of 1-methyluracilate complex with silver(I) and theoretical studies of the 1-MeU anion, Spectrochimica Acta Part A, 59 (2003) 1247-1254.
Toplam 37 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Research Article
Yazarlar

Kadir Erol Bu kişi benim

Yayımlanma Tarihi 1 Haziran 2017
Yayımlandığı Sayı Yıl 2017 Cilt: 45 Sayı: 2

Kaynak Göster

APA Erol, K. (2017). Synthesis, Characterization and Chromatographic Applications of Antimicrobial Cryogels. Hacettepe Journal of Biology and Chemistry, 45(2), 187-195.
AMA Erol K. Synthesis, Characterization and Chromatographic Applications of Antimicrobial Cryogels. HJBC. Haziran 2017;45(2):187-195.
Chicago Erol, Kadir. “Synthesis, Characterization and Chromatographic Applications of Antimicrobial Cryogels”. Hacettepe Journal of Biology and Chemistry 45, sy. 2 (Haziran 2017): 187-95.
EndNote Erol K (01 Haziran 2017) Synthesis, Characterization and Chromatographic Applications of Antimicrobial Cryogels. Hacettepe Journal of Biology and Chemistry 45 2 187–195.
IEEE K. Erol, “Synthesis, Characterization and Chromatographic Applications of Antimicrobial Cryogels”, HJBC, c. 45, sy. 2, ss. 187–195, 2017.
ISNAD Erol, Kadir. “Synthesis, Characterization and Chromatographic Applications of Antimicrobial Cryogels”. Hacettepe Journal of Biology and Chemistry 45/2 (Haziran 2017), 187-195.
JAMA Erol K. Synthesis, Characterization and Chromatographic Applications of Antimicrobial Cryogels. HJBC. 2017;45:187–195.
MLA Erol, Kadir. “Synthesis, Characterization and Chromatographic Applications of Antimicrobial Cryogels”. Hacettepe Journal of Biology and Chemistry, c. 45, sy. 2, 2017, ss. 187-95.
Vancouver Erol K. Synthesis, Characterization and Chromatographic Applications of Antimicrobial Cryogels. HJBC. 2017;45(2):187-95.

HACETTEPE JOURNAL OF BIOLOGY AND CHEMİSTRY

Copyright © Hacettepe University Faculty of Science

http://www.hjbc.hacettepe.edu.tr/

https://dergipark.org.tr/tr/pub/hjbc