BibTex RIS Cite

Barium Ferrites Loaded TiO2 Usage In Photocatalytic Degradation of Rhodamine B Under Visible Light

Year 2017, Volume: 45 Issue: 3, 385 - 393, 01.09.2017

Abstract

In the present study, the barium ferrites sample was synthesizedby conventional citrate method asa first step, then it was used with different amounts in TiO2 synthesis via a soft hydrolysis method as a second step. Resulted photocatalyst samples were named as BaFts/TiO2. The samples were characterized by X-ray diffraction XRD , UV–vis diffuse reflectance spectra DRS and scanning electron microscopy SEM . The samples were tested in Rhodamine B degradation under visible light. Rhodamine B degradation efficiency was increased approximately 2.8 times with respect to the efficiency of the naked TiO2.

References

  • 1. S. Kaur, V. Singh, TiO2 mediated photocatalytic degradation studies of Reactive Red 198 by UV irradiation, J. Hazard. Mater., 141 (2007) 230-236.
  • 2. B. Lee, W. Liaw, J. Lou, Photocatalytic decolorization of methylene blue in aqueous TiO2 suspension, Environ. Eng. Sci., 16 (1999) 165-175.
  • 3. A.N. Ökte, S. Akalın, Iron (Fe3+) loaded TiO2 nanocatalysts: characterization and photoreactivity, React. Kinet. Mech. Cat., 100 (2010) 55-70.
  • 4. U.G. Akpan, B.H. Hameed, Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts: A review, J. Hazard. Mater., 170 (2009) 520-529.
  • 5. H. Park, Y. Park, W. Kim, W. Choi, Surface modification of TiO2 photocatalyst for environmental applications, J. Photoch. Photobio. C, 15 (2013) 1-20.
  • 6. A. Galinska, J. Walendziewski, Photocatalytic water splitting over Pt−TiO2 in the presence of sacrificial reagents, Energ. Fuel., 19 (2005) 1143-1147.
  • 7. H. Zhang, C. Liang, J. Liu, Z. Tian, G. Wang, W. Cai, Defect-mediated formation of Ag cluster-doped TiO2 nanoparticles for efficient photodegradation of pentachlorophenol, Langmuir, 28 (2012) 3938-3944.
  • 8. B. Liu, X. Wang, G. Cai, L. Wen, Y. Song, X. Zhao, Low temperature fabrication of V-doped TiO2 nanoparticles, structure and photocatalytic studies, J. Hazard. Mater., 169 (2009) 1112-1118.
  • 9. D.R. Baker, P.V. Kamat, Photosensitization of TiO2 nanostructures with CdS quantum dots: Particulate versus tubular support architectures, Adv. Funct. Mater., 19 (2009) 805-811.
  • 10. Y.C. Nah, A. Ghicov, D. Kim, S. Berger, P. Schmuki, TiO2−WO3 Composite Nanotubes by Alloy Anodization: Growth and Enhanced Electrochromic Properties, J. Am. Chem. Soc., 130 (2008) 16154-16155.
  • 11. E. Casbeer, V.K. Sharma, X.Z. Li, Synthesis and photocatalytic activity of ferrites under visible light: a review, Sep. Purif. Technol., 87 (2012) 1-14.
  • 12. S.D. Jadhav, P.P. Hankare, R.P. Patil, R. Sasikala, Effect of sintering on photocatalytic degradation of methyl orange using zinc ferrite, Mater. Lett., 65 (2011) 371- 373.
  • 13. S.W. Cao, Y.J. Zhu, G.F. Cheng, Y.H. Huang, ZnFe2O4 nanoparticles: Microwave-hydrothermal ionic liquid synthesis and photocatalytic property over phenol, J. Hazard. Mater., 171 (2009) 431-435.
  • 14. M. Su, C. He, V.K. Sharma, M.A. Asi, D. Xia, X. Li, H. Deng, Y. Xiong, Mesoporous zinc ferrite: Synthesis, characterization, and photocatalytic activity with H2O2/visible light, J. Hazard. Mater., 211-212 (2012) 95-103.
  • 15. H. Yang, J. Yan, Z. Lu, X. Cheng, Y. Tang, Photocatalytic activity evaluation of tetragonal CuFe2O4 nanoparticles for the H2 evolution under visible light irradiation, J. Alloy. Compd., 476 (2009) 715-719.
  • 16. Z. Zhu, X. Li, Q. Zhao, Y. Li, C. Sun, Y. Cao, Photocatalytic performances and activities of Ag-doped CuFe2O4 nanoparticles, Mater. Res. Bull., 48 (2013) 2927-2932.
  • 17. G. Rekhila, Y. Bessekhouad, M. Trari, Visible light hydrogen production on the novel ferrite NiFe2O4, Int. J. Hydrogen Energ., 38 (2013) 6335-6343.
  • 18. P. Guo, G. Zhang, J. Yu, H. Li, X.S. Zhao, Controlled synthesis, magnetic and photocatalytic properties of hollow spheres and colloidal nanocrystal clusters of manganese ferrite, Colloid. Surface. A, 395 (2012) 168-174.
  • 19. P. Sathishkumar, R.V. Mangalaraja, S. Anandan, M. Ashokkumar, CoFe2O4/TiO2 nanocatalysts for the photocatalytic degradation of reactive red 120 in aqueous solutions in the presence and absence of electron acceptors, Chem. Eng. J., 220 (2013) 302- 310.
  • 20. P. Sathishkumar, N. Pugazhenthiran, R.V. Mangalaraja, A.M. Asiri, S. Anandan, ZnO supported CoFe2O4 nanophotocatalysts for the mineralization of direct blue 71 in aqueous environments, J. Hazard. Mater., 252-253 (2013) 171-179.
  • 21. Y. Hou, X. Li, Q. Zhao, G. Chen, ZnFe2O4 multi-porous microbricks/graphene hybrid photocatalyst: facile synthesis, improved activity and photocatalytic mechanism, Appl. Catal. B Environ., 142-143 (2013) 80-88.
  • 22. L. Sun, R. Shao, L. Tang, Z. Chen, Synthesis of ZnFe2O4/ ZnO nanocomposites immobilized on graphene with enhanced photocatalytic activity under solar light irradiation, J. Alloy. Compd., 564 (2013) 55-62.
  • 23. R. Dom, R. Subasri, K. Radha, P.H. Borse, Synthesis of solar active nanocrystalline ferrite, MFe2O4 (M: Ca, Zn, Mg) photocatalyst by microwave irradiation, Solid State Commun., 151 (2011) 470-473.
  • 24. L. Zhang, Y. He, Y. Wu, T. Wu, Photocatalytic degradation of RhB over MgFe2O4/TiO2 composite materials, Mater. Sci. Eng. B Adv., 176 (2011) 1497-1504.
  • 25. Y. Yang, Y. Jiang, Y. Wang, Y. Sun, L. Liu, J. Zhang, Influences of sintering atmosphere on the formation and photocatalytic property of BaFe2O4, Mater. Chem. Phys., 105 (2007) 154-156.
  • 26. S. Lee, J. Drwiega, D. Mazyck, CY. Wu, W. M. Sigmund, Synthesis and characterization of hard magnetic composite photocatalyst—Barium ferrite/silica/titania, Mater. Chem. Phys., 96 (2006) 483-488.
  • 27. C. Valero-Luna, S.A. Palomares-Sanchéz, F. Ruíz, Catalytic activity of the barium hexaferrite with H2O2/ visible light irradiation for degradation of methylene blue, Catal. Today, 266 (2016) 110-119.
  • 28. R.A. Candeia, M.A.F. Souza, M.I.B. Bernardi, S.C. Maestrelli, I.M.G. Santos, A.G. Souza, E. Longo, Monoferrite BaFe2O4 applied as ceramic pigment, Ceram. Int., 33 (2007) 521-525.
  • 29. R. Babuta, I. Lazau, C. Pacurariu, R.I. Lazau, Barium hexaferrite synthesis via the citrate method, Chem. Bull. “POLITEHNICA” Univ. (Timisoara), 59 (2014) 31- 35.
  • 30. N. Kislov, S.S. Srinivasan, Y. Emirov, E.K. Stefanakos, Optical absorption red and blue shifts in ZnFe2O4 nanoparticle, Mater. Sci. Eng. B Adv., 153 (2008) 70– 77.
  • 31. F. Yakuphanoğlu, Electrical characterization and device characterization of ZnO microring shaped films by sol–gel method, J. Alloy. Compd., 507 (2010) 184–189.
  • 32. M. Asiltürk, F. Sayılkan, E. Arpaç, Effect of Fe3+ ion doping to TiO2 on the photocatalytic degradation of malachite green dye under UV and vis-irradiation, J. Photoch. Photobio. A, 203 (2009) 64–71.
  • 33. W. Septina, S. Ikeda, M.A. Khan, T. Hirai, T. Harada, M. Matsumura, L.M. Peter, Potentiostatic electrodeposition of cuprous oxide thin films for photovoltaic applications, Electrochim. Acta, 56 (2011) 4882–4888.
  • 34. N. Singh, R.M. Mehra, A. Kapoor, Synthesis and characterization of ZnO nanoparticles, J. NanoElectron. Phys., 3 (2011) 132–139.
  • 35. Ö. Kerkez, İ. Boz, Photodegradation of methylene blue with Ag2O/TiO2 under visible Light: operational parameters, Chem. Eng. Commun., 202 (2015) 534– 541.
  • 36. D. Maruthamani,D. Divakar, M. Kumaravel, Enhanced photocatalytic activity of TiO2 by reduced graphene oxide in mineralization of rhodamine B dye, J. Ind. Eng. Chem., 30 (2015) 33–43.
  • 37. R. Vargas, O. Núnez, Hydrogen bond interactions at the TiO2 surface: Their contribution to the pH dependent photo-catalytic degradation of p-nitrophenol, J. Mol. Catal. A Chem., 300 (2009) 65–71.
  • 38. M.F. Hou, C.X. Mac, W.D. Zhang, X.Y. Tang, Y.N. Fan, H.F. Wan, Removal of rhodamine B using iron-pillared bentonite, J. Hazard. Mater., 186 (2011) 1118–1123.
  • 39. Y. Guo, J. Zhao, H. Zhang, S. Yang, J. Qi, Z. Wang, H. Xu, Use of rice husk-based porous carbon for adsorption of rhodamine B from aqueous solutions, Dyes Pigments, 66 (2005) 123-128.
  • 40. K. Naeem, F. Ouyang, Preparation of Fe3+-doped TiO2 nanoparticles and its photocatalytic activity under UV light, Physica B, 405 (2010) 221–226.
  • 41. Y.H. Xu, D.H. Liang, M.L. Liu, D.Z. Liu, Preparation and characterization of Cu2O–TiO2: Efficient photocatalytic degradation of methylene blue, Mater. Res. Bull., 43 (2008) 3474–3482.

Görünür Işık Altında Rodamin B’nin Fotokatalitik Parçalanmasında Baryum Ferrit Yüklenmiş TiO Kullanılması

Year 2017, Volume: 45 Issue: 3, 385 - 393, 01.09.2017

Abstract

B u çalışmada ilk basamakta baryum ferrit örneği klasik sitrat yöntemiyle sentezlenmiştir. İkinci basamakta bu örnek hidroliz yöntemi ile TiO sentezinde farklı miktarlarda kullanılmıştır. Elde edilen fotokatalizör örnekleri BaFts/TiO2 olarak adlandırılmıştır. Örnekler X-ışını difraksiyonu XRD , UV-görünür alan difüz reflektansı UV-vis DRS ve taramalı elektron mikroskobu SEM ile karakterize edilmiştir. Örnekler, görünür ışık altında Rodamin B parçalanmasında kullanılmıştır. Rodamin B’nin parçalanma etkinliği, yalın TiO2’in etkinliğine kıyasla yaklaşık 2.8 kat artmıştır

References

  • 1. S. Kaur, V. Singh, TiO2 mediated photocatalytic degradation studies of Reactive Red 198 by UV irradiation, J. Hazard. Mater., 141 (2007) 230-236.
  • 2. B. Lee, W. Liaw, J. Lou, Photocatalytic decolorization of methylene blue in aqueous TiO2 suspension, Environ. Eng. Sci., 16 (1999) 165-175.
  • 3. A.N. Ökte, S. Akalın, Iron (Fe3+) loaded TiO2 nanocatalysts: characterization and photoreactivity, React. Kinet. Mech. Cat., 100 (2010) 55-70.
  • 4. U.G. Akpan, B.H. Hameed, Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts: A review, J. Hazard. Mater., 170 (2009) 520-529.
  • 5. H. Park, Y. Park, W. Kim, W. Choi, Surface modification of TiO2 photocatalyst for environmental applications, J. Photoch. Photobio. C, 15 (2013) 1-20.
  • 6. A. Galinska, J. Walendziewski, Photocatalytic water splitting over Pt−TiO2 in the presence of sacrificial reagents, Energ. Fuel., 19 (2005) 1143-1147.
  • 7. H. Zhang, C. Liang, J. Liu, Z. Tian, G. Wang, W. Cai, Defect-mediated formation of Ag cluster-doped TiO2 nanoparticles for efficient photodegradation of pentachlorophenol, Langmuir, 28 (2012) 3938-3944.
  • 8. B. Liu, X. Wang, G. Cai, L. Wen, Y. Song, X. Zhao, Low temperature fabrication of V-doped TiO2 nanoparticles, structure and photocatalytic studies, J. Hazard. Mater., 169 (2009) 1112-1118.
  • 9. D.R. Baker, P.V. Kamat, Photosensitization of TiO2 nanostructures with CdS quantum dots: Particulate versus tubular support architectures, Adv. Funct. Mater., 19 (2009) 805-811.
  • 10. Y.C. Nah, A. Ghicov, D. Kim, S. Berger, P. Schmuki, TiO2−WO3 Composite Nanotubes by Alloy Anodization: Growth and Enhanced Electrochromic Properties, J. Am. Chem. Soc., 130 (2008) 16154-16155.
  • 11. E. Casbeer, V.K. Sharma, X.Z. Li, Synthesis and photocatalytic activity of ferrites under visible light: a review, Sep. Purif. Technol., 87 (2012) 1-14.
  • 12. S.D. Jadhav, P.P. Hankare, R.P. Patil, R. Sasikala, Effect of sintering on photocatalytic degradation of methyl orange using zinc ferrite, Mater. Lett., 65 (2011) 371- 373.
  • 13. S.W. Cao, Y.J. Zhu, G.F. Cheng, Y.H. Huang, ZnFe2O4 nanoparticles: Microwave-hydrothermal ionic liquid synthesis and photocatalytic property over phenol, J. Hazard. Mater., 171 (2009) 431-435.
  • 14. M. Su, C. He, V.K. Sharma, M.A. Asi, D. Xia, X. Li, H. Deng, Y. Xiong, Mesoporous zinc ferrite: Synthesis, characterization, and photocatalytic activity with H2O2/visible light, J. Hazard. Mater., 211-212 (2012) 95-103.
  • 15. H. Yang, J. Yan, Z. Lu, X. Cheng, Y. Tang, Photocatalytic activity evaluation of tetragonal CuFe2O4 nanoparticles for the H2 evolution under visible light irradiation, J. Alloy. Compd., 476 (2009) 715-719.
  • 16. Z. Zhu, X. Li, Q. Zhao, Y. Li, C. Sun, Y. Cao, Photocatalytic performances and activities of Ag-doped CuFe2O4 nanoparticles, Mater. Res. Bull., 48 (2013) 2927-2932.
  • 17. G. Rekhila, Y. Bessekhouad, M. Trari, Visible light hydrogen production on the novel ferrite NiFe2O4, Int. J. Hydrogen Energ., 38 (2013) 6335-6343.
  • 18. P. Guo, G. Zhang, J. Yu, H. Li, X.S. Zhao, Controlled synthesis, magnetic and photocatalytic properties of hollow spheres and colloidal nanocrystal clusters of manganese ferrite, Colloid. Surface. A, 395 (2012) 168-174.
  • 19. P. Sathishkumar, R.V. Mangalaraja, S. Anandan, M. Ashokkumar, CoFe2O4/TiO2 nanocatalysts for the photocatalytic degradation of reactive red 120 in aqueous solutions in the presence and absence of electron acceptors, Chem. Eng. J., 220 (2013) 302- 310.
  • 20. P. Sathishkumar, N. Pugazhenthiran, R.V. Mangalaraja, A.M. Asiri, S. Anandan, ZnO supported CoFe2O4 nanophotocatalysts for the mineralization of direct blue 71 in aqueous environments, J. Hazard. Mater., 252-253 (2013) 171-179.
  • 21. Y. Hou, X. Li, Q. Zhao, G. Chen, ZnFe2O4 multi-porous microbricks/graphene hybrid photocatalyst: facile synthesis, improved activity and photocatalytic mechanism, Appl. Catal. B Environ., 142-143 (2013) 80-88.
  • 22. L. Sun, R. Shao, L. Tang, Z. Chen, Synthesis of ZnFe2O4/ ZnO nanocomposites immobilized on graphene with enhanced photocatalytic activity under solar light irradiation, J. Alloy. Compd., 564 (2013) 55-62.
  • 23. R. Dom, R. Subasri, K. Radha, P.H. Borse, Synthesis of solar active nanocrystalline ferrite, MFe2O4 (M: Ca, Zn, Mg) photocatalyst by microwave irradiation, Solid State Commun., 151 (2011) 470-473.
  • 24. L. Zhang, Y. He, Y. Wu, T. Wu, Photocatalytic degradation of RhB over MgFe2O4/TiO2 composite materials, Mater. Sci. Eng. B Adv., 176 (2011) 1497-1504.
  • 25. Y. Yang, Y. Jiang, Y. Wang, Y. Sun, L. Liu, J. Zhang, Influences of sintering atmosphere on the formation and photocatalytic property of BaFe2O4, Mater. Chem. Phys., 105 (2007) 154-156.
  • 26. S. Lee, J. Drwiega, D. Mazyck, CY. Wu, W. M. Sigmund, Synthesis and characterization of hard magnetic composite photocatalyst—Barium ferrite/silica/titania, Mater. Chem. Phys., 96 (2006) 483-488.
  • 27. C. Valero-Luna, S.A. Palomares-Sanchéz, F. Ruíz, Catalytic activity of the barium hexaferrite with H2O2/ visible light irradiation for degradation of methylene blue, Catal. Today, 266 (2016) 110-119.
  • 28. R.A. Candeia, M.A.F. Souza, M.I.B. Bernardi, S.C. Maestrelli, I.M.G. Santos, A.G. Souza, E. Longo, Monoferrite BaFe2O4 applied as ceramic pigment, Ceram. Int., 33 (2007) 521-525.
  • 29. R. Babuta, I. Lazau, C. Pacurariu, R.I. Lazau, Barium hexaferrite synthesis via the citrate method, Chem. Bull. “POLITEHNICA” Univ. (Timisoara), 59 (2014) 31- 35.
  • 30. N. Kislov, S.S. Srinivasan, Y. Emirov, E.K. Stefanakos, Optical absorption red and blue shifts in ZnFe2O4 nanoparticle, Mater. Sci. Eng. B Adv., 153 (2008) 70– 77.
  • 31. F. Yakuphanoğlu, Electrical characterization and device characterization of ZnO microring shaped films by sol–gel method, J. Alloy. Compd., 507 (2010) 184–189.
  • 32. M. Asiltürk, F. Sayılkan, E. Arpaç, Effect of Fe3+ ion doping to TiO2 on the photocatalytic degradation of malachite green dye under UV and vis-irradiation, J. Photoch. Photobio. A, 203 (2009) 64–71.
  • 33. W. Septina, S. Ikeda, M.A. Khan, T. Hirai, T. Harada, M. Matsumura, L.M. Peter, Potentiostatic electrodeposition of cuprous oxide thin films for photovoltaic applications, Electrochim. Acta, 56 (2011) 4882–4888.
  • 34. N. Singh, R.M. Mehra, A. Kapoor, Synthesis and characterization of ZnO nanoparticles, J. NanoElectron. Phys., 3 (2011) 132–139.
  • 35. Ö. Kerkez, İ. Boz, Photodegradation of methylene blue with Ag2O/TiO2 under visible Light: operational parameters, Chem. Eng. Commun., 202 (2015) 534– 541.
  • 36. D. Maruthamani,D. Divakar, M. Kumaravel, Enhanced photocatalytic activity of TiO2 by reduced graphene oxide in mineralization of rhodamine B dye, J. Ind. Eng. Chem., 30 (2015) 33–43.
  • 37. R. Vargas, O. Núnez, Hydrogen bond interactions at the TiO2 surface: Their contribution to the pH dependent photo-catalytic degradation of p-nitrophenol, J. Mol. Catal. A Chem., 300 (2009) 65–71.
  • 38. M.F. Hou, C.X. Mac, W.D. Zhang, X.Y. Tang, Y.N. Fan, H.F. Wan, Removal of rhodamine B using iron-pillared bentonite, J. Hazard. Mater., 186 (2011) 1118–1123.
  • 39. Y. Guo, J. Zhao, H. Zhang, S. Yang, J. Qi, Z. Wang, H. Xu, Use of rice husk-based porous carbon for adsorption of rhodamine B from aqueous solutions, Dyes Pigments, 66 (2005) 123-128.
  • 40. K. Naeem, F. Ouyang, Preparation of Fe3+-doped TiO2 nanoparticles and its photocatalytic activity under UV light, Physica B, 405 (2010) 221–226.
  • 41. Y.H. Xu, D.H. Liang, M.L. Liu, D.Z. Liu, Preparation and characterization of Cu2O–TiO2: Efficient photocatalytic degradation of methylene blue, Mater. Res. Bull., 43 (2008) 3474–3482.
There are 41 citations in total.

Details

Primary Language Turkish
Journal Section Research Article
Authors

Özge Kerkez Kuyumcu

Publication Date September 1, 2017
Published in Issue Year 2017 Volume: 45 Issue: 3

Cite

APA Kerkez Kuyumcu, Ö. (2017). Görünür Işık Altında Rodamin B’nin Fotokatalitik Parçalanmasında Baryum Ferrit Yüklenmiş TiO Kullanılması. Hacettepe Journal of Biology and Chemistry, 45(3), 385-393.
AMA Kerkez Kuyumcu Ö. Görünür Işık Altında Rodamin B’nin Fotokatalitik Parçalanmasında Baryum Ferrit Yüklenmiş TiO Kullanılması. HJBC. September 2017;45(3):385-393.
Chicago Kerkez Kuyumcu, Özge. “Görünür Işık Altında Rodamin B’nin Fotokatalitik Parçalanmasında Baryum Ferrit Yüklenmiş TiO Kullanılması”. Hacettepe Journal of Biology and Chemistry 45, no. 3 (September 2017): 385-93.
EndNote Kerkez Kuyumcu Ö (September 1, 2017) Görünür Işık Altında Rodamin B’nin Fotokatalitik Parçalanmasında Baryum Ferrit Yüklenmiş TiO Kullanılması. Hacettepe Journal of Biology and Chemistry 45 3 385–393.
IEEE Ö. Kerkez Kuyumcu, “Görünür Işık Altında Rodamin B’nin Fotokatalitik Parçalanmasında Baryum Ferrit Yüklenmiş TiO Kullanılması”, HJBC, vol. 45, no. 3, pp. 385–393, 2017.
ISNAD Kerkez Kuyumcu, Özge. “Görünür Işık Altında Rodamin B’nin Fotokatalitik Parçalanmasında Baryum Ferrit Yüklenmiş TiO Kullanılması”. Hacettepe Journal of Biology and Chemistry 45/3 (September 2017), 385-393.
JAMA Kerkez Kuyumcu Ö. Görünür Işık Altında Rodamin B’nin Fotokatalitik Parçalanmasında Baryum Ferrit Yüklenmiş TiO Kullanılması. HJBC. 2017;45:385–393.
MLA Kerkez Kuyumcu, Özge. “Görünür Işık Altında Rodamin B’nin Fotokatalitik Parçalanmasında Baryum Ferrit Yüklenmiş TiO Kullanılması”. Hacettepe Journal of Biology and Chemistry, vol. 45, no. 3, 2017, pp. 385-93.
Vancouver Kerkez Kuyumcu Ö. Görünür Işık Altında Rodamin B’nin Fotokatalitik Parçalanmasında Baryum Ferrit Yüklenmiş TiO Kullanılması. HJBC. 2017;45(3):385-93.

HACETTEPE JOURNAL OF BIOLOGY AND CHEMİSTRY

Copyright © Hacettepe University Faculty of Science

http://www.hjbc.hacettepe.edu.tr/

https://dergipark.org.tr/tr/pub/hjbc