BibTex RIS Cite

Utilization of Hydrophobic Interaction Affinity Nanosorbent For The Extraction Of Serotonin From Edible Plants

Year 2017, Volume: 45 Issue: 4, 453 - 463, 01.11.2017

Abstract

The aim of this study was to evaluate the extraction performance of poly hydroxyethyl methacry-late-methacryloyl- L -tryptophan methyl ester poly HEMA–MAT ] nanostructures for serotonin from edible plants by a series of batch experiments. Average size of nanostructures was found as 100 nm with polydispersity index of 1.189 using zeta size analysis results. Maximum serotonin uptake capacity of the nanostructures was found to be 2901.4 ± 65.9 mg/g at pH 6.0. Applicabil-ity of this nanosorbent for the extraction of serotonin in banana and tomato before HPLC analysis was also studied and the level of serotonin was determined as 86.26 mg/g for banana and 36.02 mg/g for tomato samples.

References

  • 1. X. Huang, G. Mazza, Application of LC and LC-MS to the analysis of melatonin and serotonin in edible plants, Crit. Rev. Food Sci., 51 (2011) 269–284.
  • 2. A. Frazer, J.G. Hensler, (1999), in Basic Neurochemistry, Understanding the neuroanatomical organization of serotonin cells in brain provides insight into functions of this neurotransmitter (Siegel, G.J., Agranoff, B. W., Fisher, S.K., Albers, R.W. and Uhle, M.D., ed.), Lippincott Williams and Wilkins, Baltimore, MD. pp. 264-268.
  • 3. Z.D. Peterson, M.L. Lee, S.W. Graves, Determination of serotonin and its precursors in human plasma by capillary electrophoresis–electrospray ionization– time-of-flight mass spectrometry, J. Chromatogr. B, 810 (2004) 101-110.
  • 4. P.J. Monaghan, H.A. Brown, L.A. Houghtond, B.G. Keevil, Measurement of serotonin in platelet depleted plasma by liquid chromatography tandem mass spectrometry, J. Chromatogr. B, 877 (2009) 2163- 2167.
  • 5. A.C.C.L. Martins, M.B.A. Gloria, Changes on the levels of serotonin precursors–tryptophan and 5-hydroxytryptophan–during roasting of Arabica and Robusta coffee, Food Chem., 118 (2010) 529-533.
  • 6. D.L. Taylor, Close-up on serotonin. Learn how this key neurotransmitter influences moods and behavior, Nursing, 25 (1995) 64.
  • 7. M.T. Salvador, M.D. Murillo, M.C. Rodriguez-Yoldi, A.I. Alcade, J.E. Mesonero, M.J. Rodriguez-Yoldi, Effects of serotonin on the physiology of the rabbit small intestine, Can. J. Physiol. Pharmacol., 78 (2000) 359–366.
  • 8. R. Pelagio-Flores, R. Ortíz-Castro, A. Méndez-Bravo, L. Macías-Rodríguez, J. López-Bucio, Serotonin, a tryptophan-derived signal conserved in plants and animals, regulates root system architecture probably acting as a natural auxin inhibitor in Arabidopsis thaliana, Plant Cell Physiology, 52 (2011) 490–508.
  • 9. S.D. Paredes, A. Korkmaz, L.C. Manchester, D.X. Tan, R.J. Reiter, Phytomelatonin, a review. J. Exp. Bot., 60 (2009) 57-69.
  • 10. A.I. Romero-Pérez, R.M. Lamuela-Raventós, C. Andrés-Lacueva, M.C. Torre-Boronat, Method for the Quantitative Extraction of Resveratrol and Piceid Isomers in Grape Berry Skins. Effect of Powdery Mildew on the Stilbene Content, J. Agric. Food Chem., 49 (2001) 210-215.
  • 11. F.S. Hosseinian, W. Li, T. Beta, Measurement of anthocyanins and other phytochemicals in purple wheat, Food Chem., 109 (2008) 916-924.
  • 12. D. Ly, K. Kang, J.Y. Choi, A. Ishihara, K. Back, S.G. Lee, HPLC Analysis of Serotonin, Tryptamine, Tyramine, and the Hydroxycinnamic Acid Amides of Serotonin and Tyramine in Food Vegetables, J. Med. Food, 11 (2008) 385-389.
  • 13. R.J. Reiter, L.C. Manchester, D.X. Tan, Melatonin in walnuts, influence on levels of melatonin and total antioxidant capacity of blood, Nutrition, 21 (2005) 920-924.
  • 14. C. Zettersten, M. Co, S. Wende, C. Turner, L. P.J.R. Nyholm, Sjöberg, Identification and Characterization of Polyphenolic Antioxidants Using On-Line Liquid Chromatography, Electrochemistry, and Electrospray Ionization Tandem Mass Spectrometry, Anal. Chem., 81 (2009) 8968-8977.
  • 15. T. Lavizzari, M.T. Veciana-Nogués, S. Bover-Cid, A. Mariné-Font, M.C. Vidal-Carou, Improved method for the determination of biogenic amines and polyamines in vegetable products by ion-pair high-performance liquid chromatography, J. Chromatogr. A, 1129 (2006) 67-72.
  • 16. C. Pape, K. Lüning, Quantification of melatonin in phototrophic organisms, J. Pineal. Res., 41 (2006) 157-165.
  • 17. A. Moreno, M. Castro, E. Falqué, Evolution of trans- and cis -resveratrol content in red grapes (Vitis vinifera L. cv Mencía, Albarello and Merenzao) during ripening, Eur. Food Res. Technol., 227 (2008) 667-674.
  • 18. J. Islam, H. Shirakawa, T.K. Nguyen, H. Aso, M. Komai, Simultaneous analysis of serotonin, tryptophan and tryptamine levels in common fresh fruits and vegetables in Japan using fluorescence HPLC, Food Bioscience, 13 (2016) 56–59.
  • 19. N. Kato, T. Kojima, S. Yoshiyagawa, H. Ohta, A. Toriba, H. Nishimura, K. Hayakawa, Rapid and sensitive determination of tryptophan, serotonin and psychoactive tryptamines by thin-layer chromatography/fluorescence detection, J. Chromatogr. A, 1145 (2007) 229–233.
  • 20. C.H. Lin, Y.H. Chen, On-line identification of trans- and cis-resveratrol by nonaqueous capillary electrophoresis/ fluorescence spectroscopy at 77 K, Electrophoresis, 22 (2001) 2574-2579.
  • 21. L.Y. Gao, Q.C. Chu, J.N. Ye, Determination of transResveratrol in wines, herbs and health food by capillary electrophoresis with electrochemical detection, Food Chem., 78 (2002) 255-260.
  • 22. P.W. Stege, L.L. Sombra, G. Messina, L.D. Martinez, M.F. Silva, Determination of melatonin in wine and plant extracts by capillary electrochromatography with immobilized carboxylic multi-walled carbon nanotubes as stationary phase, Electrophoresis, 31 (2010) 2242-2248.
  • 23. F.A. Badria, Melatonin, Serotonin, and Tryptamine in Some Egyptian Food and Medicinal Plants, J. Med. Food, 5 (2002) 153-157.
  • 24. A.S. Ragab, J.V. Fleet, B. Jankowski, J.H. Park, S.C. Bobzin, Detection and quantitation of resveratrol in tomato fruit (Lycopersicon esculentum Mill.), J. Agric. Food Chem., 54 (2006) 7175-7179.
  • 25. Y. Zhang, M. Mei, X. Huang, D. Yuan, Extraction of trace nitrophenols in environmental water samples using boronate affinity sorbent, Anal. Chim. Acta, 899 (2015) 75-84.
  • 26. E. Bektaşoğlu, E.B. Özkütük, A. Ersöz, R. Say, Development of New Molecular Imprinted Solid Phase Extraction Material for Dimethoate, Spectroscopy Letters, 47 (2014) 168–176.
  • 27. J.A. Padilla-Sanchez, P. Plaza-Bolanos, R. RomeroGonzalez, N. Barco-Bonilla, J.L. Martínez-Vidal, A. Garrido-Frenich, Simultaneous analysis of chlorophenols, alkylphenols, nitrophenols and cresols in wastewater effluents, using solid phase extraction and further determination by gas chromatography tandem mass spectrometry, Talanta, 85 (2011) 2397- 2404.
  • 28. X.J. Huang, D.X. Yuan, Recent developments of extraction and microextraction technologies with porous monoliths, Crit. Rev. Anal. Chem., 42 (2012) 38-49.
  • 29. Q. Liu, J.B. Shi, L.X. Zeng, T. Wang, Y.Q. Cai, G.B. Jiang, Evaluation of graphene asan advantageous adsorbent for solid-phase extraction with chlorophenols as model analytes, J. Chromatogr. A, 1218 (2011) 197-204.
  • 30. S.Y. Ali, A.M. Sayyar, A. Amirhassan, Determination of monocyclic aromatic amines using headspace solidphase microextraction based on sol-gel technique prior to GC, J. Sep. Sci., 36 (2013) 1629-1635.
  • 31. Y.J. Meng, J.L. Anderson, Tuning the selectivity of polymeric ionic liquid sorbent coatings for the extraction of polycyclic aromatic hydrocarbons using solid-phase microextraction, J. Chromatogr. A, 1217 (2010) 6143-6152.
  • 32. F.J.V. Gomez, I.G. Hernández, S. Cerutti, M.F. Silva, Solid phase extraction/cyclodextrin-modified micellar electrokinetic chromatography for the analysis of melatonin and related indole compounds in plants, Microchem. J., 123 (2015) 22–27.
  • 33. P. Pasko, K.S. Ziaja, B. Muszynska, P. Zagrodzki, Serotonin, melatonin, and certain indole derivatives profiles in rutabaga and kohlrabi seeds, sprouts, bulbs, and roots LWT, Food Sci. Techn., 59 (2014) 740- 745.
  • 34. A. Ramakrishna, P. Giridhar, K.U. Sankar, G.A. Ravishankar, Melatonin and serotonin profiles in beans of Coffea species, J. Pineal Res., 52 (2012) 470–476.
  • 35. P. Mohr, & K. Pommerening, (1985) Affinity Chromatography and Related Practical and Theoretical Aspects. Chromatographic Science Series, Vol. 39. Marcel Dekker Inc., New York, pp.320.
  • 36. M.H. Liao, D.H. Chen, Fast and efficient adsorption/ desorption of protein by a novel magnetic nanoadsorbent, Biotechnol. Lett., 24 (2002) 1913-1917.
  • 37. N. Ozturk, S. Akgol, M. Arisoy, A. Denizli, Reversible adsorption of lipase on novel hydrophobic nanospheres, Sep. Purif. Technol., 58 (2007)83-90.
  • 38. T. Kalburcu, M.N. Tüzmen, S. Akgöl, A. Denizli, Immobilized metal ion affinity nanospheres for α-alpha-amylase immobilization, Turk J. Chem., 38 (2014) 28 – 40.
  • 39. I.P. Kema, A.M.J. Schellings, G. Melborg, J.M.C. Hoppenbrouwers, F.A.J. Muskiet, Influence of a Serotonin- and Dopamine-Rich Diet on Platelet Serotonin Content and Urinary Excretion of Biogenic Amines and Their Metabolites, Clin. Chem., 38 (1992) 1730-1736.
  • 40. B.H.J. Hofstee, Protein binding by agarose carrying hydrophobic groups in conjunction with charges, Biophys. Res. Commun., 50 (1973) 751-757.
  • 41. E.B. Stuart, (1993) Hydrophobic Interaction Chromatography, Principles and methods, Amersham Pharmacia Biotech, ISBN 91-970490-4-2.
  • 42. W.R. Melander, Z. El Rassi, C. Horvath, Interplay of hydrophobic and electrostatic interactions in biopolymer chromatography. Effect of salts on the retention of proteins, J. Chromatogr., 469 (1989) 3–27.
  • 43. P. Strop, D. Cechova, V. Tomasek, Model study of hydrophobic interactions of alpha and beta trypsin and alpha-chymotrypsin, J. Chromatogr., 259 (1983) 255-268.
  • 44. Y. Sanz, F. Mulholland, F. Toldra, Purification and Characterization of a Tripeptidase from Lactobacillus sake, J. Agric. Food. Chem., 46 (1998) 349-353.
  • 45. S. Hjerten Some general aspects of hydrophobic interaction chromatography, J. Chromatogr., 87 (1973) 325-331.
  • 46. J. Porath, L. Sundberg, N. Fornstedt, I. Olson, Salting-out in amphiphilic gels as a new approach to hydrophobic adsorption, Nature, 245 (1973) 465-472.
  • 47. M. Tsezos, R.P. Volesky, Biosorption of uranium and thorium, J. Biotechnol. Bioeng., 23 (1987) 583-604.
  • 48. N. Kuyucak, B. Volesky, Accumulation of cobalt by marine alga, J. Biotechnol. Bioeng., 33 (1989) 809- 814.
  • 49. Z. Aksu, T.A, Kutsal, A bioseparation process for removing Pb2+ ions from wastewater by using C.vulgaris, J. Chem. Technol. Biot., 52 (1991) 109-118.
  • 50. Z. El Rassi, Recent progress in reversed-phase and hydrophobic interaction chromatography of carbohydrate species, J. Chromatogr. A, 720 (1996) 93-118.
  • 51. Y. Jung, S. Kim, S.J. Park, J.M. Kim, Application of polymer-modified nanoporous silica to adsorbents of uranyl ions, Colloids Surf. A, Physicochem. Eng. Aspects., 313–314 (2008) 162-166.
  • 52. A. Vinu, K.Z. Hossai, G.S. Kumar, V. Sivamurugan, K. Ariga, Adsorption of amino acid on mesoporous molecular sieves, Stud. Surf. Sci. Catal., 156 (2005) 631-636.
  • 53. S. Kang, K. Kang, K. Lee, K. Back, Characterization of tryptamine 5-hydroxylase and serotonin synthesis in rice plants, Plant Cell Rep., 26 (2007) 2009–2015.
  • 54. S. Kang, K. Back, Enriched production of N-hydroxycinnamic acid amides and biogenic amines in pepper (Capsicum annuum) flowers, Scientia Horticulturae, 108 (2006) 337–341.

Yenilebilir Bitkilerden Serotoninin Özütlenmesi için Hidrofobik Etkileşim Afinite Nanosorbentinin Kullanımı

Year 2017, Volume: 45 Issue: 4, 453 - 463, 01.11.2017

Abstract

B u çalışmanın amacı, bir seri kesikli sistem deneylerle poli hidroksietil metakrilat-metakriloil- L -triptofan metil ester poli HEMA-MAT ] nano-yapılarının yenilebilir bitkilerden serotonin için özütleme performansını değerlendirmektir. Polidispersiyon indeksi 1.189 olan nanoyapıların ortalama boyutu, zeta boyut analizi sonuçlarına göre 100 nmdir. Nanoyapıların maksimum serotonin adsorpsiyon kapasitesi, pH 6.0’da 2901.4±65.9 mg/g olarak bulunmuştur. Bu nanosorbentin, HPLC analizi öncesi muz ve domatesde serotonin özütlemesi için uygulanabilirliği de araştırılmış. Serotonin seviyesi muz için 86.26 mg/g, domates numuneleri için 36.02 mg/g olarak tespit edilmiştir

References

  • 1. X. Huang, G. Mazza, Application of LC and LC-MS to the analysis of melatonin and serotonin in edible plants, Crit. Rev. Food Sci., 51 (2011) 269–284.
  • 2. A. Frazer, J.G. Hensler, (1999), in Basic Neurochemistry, Understanding the neuroanatomical organization of serotonin cells in brain provides insight into functions of this neurotransmitter (Siegel, G.J., Agranoff, B. W., Fisher, S.K., Albers, R.W. and Uhle, M.D., ed.), Lippincott Williams and Wilkins, Baltimore, MD. pp. 264-268.
  • 3. Z.D. Peterson, M.L. Lee, S.W. Graves, Determination of serotonin and its precursors in human plasma by capillary electrophoresis–electrospray ionization– time-of-flight mass spectrometry, J. Chromatogr. B, 810 (2004) 101-110.
  • 4. P.J. Monaghan, H.A. Brown, L.A. Houghtond, B.G. Keevil, Measurement of serotonin in platelet depleted plasma by liquid chromatography tandem mass spectrometry, J. Chromatogr. B, 877 (2009) 2163- 2167.
  • 5. A.C.C.L. Martins, M.B.A. Gloria, Changes on the levels of serotonin precursors–tryptophan and 5-hydroxytryptophan–during roasting of Arabica and Robusta coffee, Food Chem., 118 (2010) 529-533.
  • 6. D.L. Taylor, Close-up on serotonin. Learn how this key neurotransmitter influences moods and behavior, Nursing, 25 (1995) 64.
  • 7. M.T. Salvador, M.D. Murillo, M.C. Rodriguez-Yoldi, A.I. Alcade, J.E. Mesonero, M.J. Rodriguez-Yoldi, Effects of serotonin on the physiology of the rabbit small intestine, Can. J. Physiol. Pharmacol., 78 (2000) 359–366.
  • 8. R. Pelagio-Flores, R. Ortíz-Castro, A. Méndez-Bravo, L. Macías-Rodríguez, J. López-Bucio, Serotonin, a tryptophan-derived signal conserved in plants and animals, regulates root system architecture probably acting as a natural auxin inhibitor in Arabidopsis thaliana, Plant Cell Physiology, 52 (2011) 490–508.
  • 9. S.D. Paredes, A. Korkmaz, L.C. Manchester, D.X. Tan, R.J. Reiter, Phytomelatonin, a review. J. Exp. Bot., 60 (2009) 57-69.
  • 10. A.I. Romero-Pérez, R.M. Lamuela-Raventós, C. Andrés-Lacueva, M.C. Torre-Boronat, Method for the Quantitative Extraction of Resveratrol and Piceid Isomers in Grape Berry Skins. Effect of Powdery Mildew on the Stilbene Content, J. Agric. Food Chem., 49 (2001) 210-215.
  • 11. F.S. Hosseinian, W. Li, T. Beta, Measurement of anthocyanins and other phytochemicals in purple wheat, Food Chem., 109 (2008) 916-924.
  • 12. D. Ly, K. Kang, J.Y. Choi, A. Ishihara, K. Back, S.G. Lee, HPLC Analysis of Serotonin, Tryptamine, Tyramine, and the Hydroxycinnamic Acid Amides of Serotonin and Tyramine in Food Vegetables, J. Med. Food, 11 (2008) 385-389.
  • 13. R.J. Reiter, L.C. Manchester, D.X. Tan, Melatonin in walnuts, influence on levels of melatonin and total antioxidant capacity of blood, Nutrition, 21 (2005) 920-924.
  • 14. C. Zettersten, M. Co, S. Wende, C. Turner, L. P.J.R. Nyholm, Sjöberg, Identification and Characterization of Polyphenolic Antioxidants Using On-Line Liquid Chromatography, Electrochemistry, and Electrospray Ionization Tandem Mass Spectrometry, Anal. Chem., 81 (2009) 8968-8977.
  • 15. T. Lavizzari, M.T. Veciana-Nogués, S. Bover-Cid, A. Mariné-Font, M.C. Vidal-Carou, Improved method for the determination of biogenic amines and polyamines in vegetable products by ion-pair high-performance liquid chromatography, J. Chromatogr. A, 1129 (2006) 67-72.
  • 16. C. Pape, K. Lüning, Quantification of melatonin in phototrophic organisms, J. Pineal. Res., 41 (2006) 157-165.
  • 17. A. Moreno, M. Castro, E. Falqué, Evolution of trans- and cis -resveratrol content in red grapes (Vitis vinifera L. cv Mencía, Albarello and Merenzao) during ripening, Eur. Food Res. Technol., 227 (2008) 667-674.
  • 18. J. Islam, H. Shirakawa, T.K. Nguyen, H. Aso, M. Komai, Simultaneous analysis of serotonin, tryptophan and tryptamine levels in common fresh fruits and vegetables in Japan using fluorescence HPLC, Food Bioscience, 13 (2016) 56–59.
  • 19. N. Kato, T. Kojima, S. Yoshiyagawa, H. Ohta, A. Toriba, H. Nishimura, K. Hayakawa, Rapid and sensitive determination of tryptophan, serotonin and psychoactive tryptamines by thin-layer chromatography/fluorescence detection, J. Chromatogr. A, 1145 (2007) 229–233.
  • 20. C.H. Lin, Y.H. Chen, On-line identification of trans- and cis-resveratrol by nonaqueous capillary electrophoresis/ fluorescence spectroscopy at 77 K, Electrophoresis, 22 (2001) 2574-2579.
  • 21. L.Y. Gao, Q.C. Chu, J.N. Ye, Determination of transResveratrol in wines, herbs and health food by capillary electrophoresis with electrochemical detection, Food Chem., 78 (2002) 255-260.
  • 22. P.W. Stege, L.L. Sombra, G. Messina, L.D. Martinez, M.F. Silva, Determination of melatonin in wine and plant extracts by capillary electrochromatography with immobilized carboxylic multi-walled carbon nanotubes as stationary phase, Electrophoresis, 31 (2010) 2242-2248.
  • 23. F.A. Badria, Melatonin, Serotonin, and Tryptamine in Some Egyptian Food and Medicinal Plants, J. Med. Food, 5 (2002) 153-157.
  • 24. A.S. Ragab, J.V. Fleet, B. Jankowski, J.H. Park, S.C. Bobzin, Detection and quantitation of resveratrol in tomato fruit (Lycopersicon esculentum Mill.), J. Agric. Food Chem., 54 (2006) 7175-7179.
  • 25. Y. Zhang, M. Mei, X. Huang, D. Yuan, Extraction of trace nitrophenols in environmental water samples using boronate affinity sorbent, Anal. Chim. Acta, 899 (2015) 75-84.
  • 26. E. Bektaşoğlu, E.B. Özkütük, A. Ersöz, R. Say, Development of New Molecular Imprinted Solid Phase Extraction Material for Dimethoate, Spectroscopy Letters, 47 (2014) 168–176.
  • 27. J.A. Padilla-Sanchez, P. Plaza-Bolanos, R. RomeroGonzalez, N. Barco-Bonilla, J.L. Martínez-Vidal, A. Garrido-Frenich, Simultaneous analysis of chlorophenols, alkylphenols, nitrophenols and cresols in wastewater effluents, using solid phase extraction and further determination by gas chromatography tandem mass spectrometry, Talanta, 85 (2011) 2397- 2404.
  • 28. X.J. Huang, D.X. Yuan, Recent developments of extraction and microextraction technologies with porous monoliths, Crit. Rev. Anal. Chem., 42 (2012) 38-49.
  • 29. Q. Liu, J.B. Shi, L.X. Zeng, T. Wang, Y.Q. Cai, G.B. Jiang, Evaluation of graphene asan advantageous adsorbent for solid-phase extraction with chlorophenols as model analytes, J. Chromatogr. A, 1218 (2011) 197-204.
  • 30. S.Y. Ali, A.M. Sayyar, A. Amirhassan, Determination of monocyclic aromatic amines using headspace solidphase microextraction based on sol-gel technique prior to GC, J. Sep. Sci., 36 (2013) 1629-1635.
  • 31. Y.J. Meng, J.L. Anderson, Tuning the selectivity of polymeric ionic liquid sorbent coatings for the extraction of polycyclic aromatic hydrocarbons using solid-phase microextraction, J. Chromatogr. A, 1217 (2010) 6143-6152.
  • 32. F.J.V. Gomez, I.G. Hernández, S. Cerutti, M.F. Silva, Solid phase extraction/cyclodextrin-modified micellar electrokinetic chromatography for the analysis of melatonin and related indole compounds in plants, Microchem. J., 123 (2015) 22–27.
  • 33. P. Pasko, K.S. Ziaja, B. Muszynska, P. Zagrodzki, Serotonin, melatonin, and certain indole derivatives profiles in rutabaga and kohlrabi seeds, sprouts, bulbs, and roots LWT, Food Sci. Techn., 59 (2014) 740- 745.
  • 34. A. Ramakrishna, P. Giridhar, K.U. Sankar, G.A. Ravishankar, Melatonin and serotonin profiles in beans of Coffea species, J. Pineal Res., 52 (2012) 470–476.
  • 35. P. Mohr, & K. Pommerening, (1985) Affinity Chromatography and Related Practical and Theoretical Aspects. Chromatographic Science Series, Vol. 39. Marcel Dekker Inc., New York, pp.320.
  • 36. M.H. Liao, D.H. Chen, Fast and efficient adsorption/ desorption of protein by a novel magnetic nanoadsorbent, Biotechnol. Lett., 24 (2002) 1913-1917.
  • 37. N. Ozturk, S. Akgol, M. Arisoy, A. Denizli, Reversible adsorption of lipase on novel hydrophobic nanospheres, Sep. Purif. Technol., 58 (2007)83-90.
  • 38. T. Kalburcu, M.N. Tüzmen, S. Akgöl, A. Denizli, Immobilized metal ion affinity nanospheres for α-alpha-amylase immobilization, Turk J. Chem., 38 (2014) 28 – 40.
  • 39. I.P. Kema, A.M.J. Schellings, G. Melborg, J.M.C. Hoppenbrouwers, F.A.J. Muskiet, Influence of a Serotonin- and Dopamine-Rich Diet on Platelet Serotonin Content and Urinary Excretion of Biogenic Amines and Their Metabolites, Clin. Chem., 38 (1992) 1730-1736.
  • 40. B.H.J. Hofstee, Protein binding by agarose carrying hydrophobic groups in conjunction with charges, Biophys. Res. Commun., 50 (1973) 751-757.
  • 41. E.B. Stuart, (1993) Hydrophobic Interaction Chromatography, Principles and methods, Amersham Pharmacia Biotech, ISBN 91-970490-4-2.
  • 42. W.R. Melander, Z. El Rassi, C. Horvath, Interplay of hydrophobic and electrostatic interactions in biopolymer chromatography. Effect of salts on the retention of proteins, J. Chromatogr., 469 (1989) 3–27.
  • 43. P. Strop, D. Cechova, V. Tomasek, Model study of hydrophobic interactions of alpha and beta trypsin and alpha-chymotrypsin, J. Chromatogr., 259 (1983) 255-268.
  • 44. Y. Sanz, F. Mulholland, F. Toldra, Purification and Characterization of a Tripeptidase from Lactobacillus sake, J. Agric. Food. Chem., 46 (1998) 349-353.
  • 45. S. Hjerten Some general aspects of hydrophobic interaction chromatography, J. Chromatogr., 87 (1973) 325-331.
  • 46. J. Porath, L. Sundberg, N. Fornstedt, I. Olson, Salting-out in amphiphilic gels as a new approach to hydrophobic adsorption, Nature, 245 (1973) 465-472.
  • 47. M. Tsezos, R.P. Volesky, Biosorption of uranium and thorium, J. Biotechnol. Bioeng., 23 (1987) 583-604.
  • 48. N. Kuyucak, B. Volesky, Accumulation of cobalt by marine alga, J. Biotechnol. Bioeng., 33 (1989) 809- 814.
  • 49. Z. Aksu, T.A, Kutsal, A bioseparation process for removing Pb2+ ions from wastewater by using C.vulgaris, J. Chem. Technol. Biot., 52 (1991) 109-118.
  • 50. Z. El Rassi, Recent progress in reversed-phase and hydrophobic interaction chromatography of carbohydrate species, J. Chromatogr. A, 720 (1996) 93-118.
  • 51. Y. Jung, S. Kim, S.J. Park, J.M. Kim, Application of polymer-modified nanoporous silica to adsorbents of uranyl ions, Colloids Surf. A, Physicochem. Eng. Aspects., 313–314 (2008) 162-166.
  • 52. A. Vinu, K.Z. Hossai, G.S. Kumar, V. Sivamurugan, K. Ariga, Adsorption of amino acid on mesoporous molecular sieves, Stud. Surf. Sci. Catal., 156 (2005) 631-636.
  • 53. S. Kang, K. Kang, K. Lee, K. Back, Characterization of tryptamine 5-hydroxylase and serotonin synthesis in rice plants, Plant Cell Rep., 26 (2007) 2009–2015.
  • 54. S. Kang, K. Back, Enriched production of N-hydroxycinnamic acid amides and biogenic amines in pepper (Capsicum annuum) flowers, Scientia Horticulturae, 108 (2006) 337–341.
There are 54 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

Mehmet Antmen This is me

Nalan Tüzmen This is me

Mine Antep This is me

Sinan Akgöl This is me

Publication Date November 1, 2017
Published in Issue Year 2017 Volume: 45 Issue: 4

Cite

APA Antmen, M., Tüzmen, N., Antep, M., Akgöl, S. (2017). Utilization of Hydrophobic Interaction Affinity Nanosorbent For The Extraction Of Serotonin From Edible Plants. Hacettepe Journal of Biology and Chemistry, 45(4), 453-463.
AMA Antmen M, Tüzmen N, Antep M, Akgöl S. Utilization of Hydrophobic Interaction Affinity Nanosorbent For The Extraction Of Serotonin From Edible Plants. HJBC. November 2017;45(4):453-463.
Chicago Antmen, Mehmet, Nalan Tüzmen, Mine Antep, and Sinan Akgöl. “Utilization of Hydrophobic Interaction Affinity Nanosorbent For The Extraction Of Serotonin From Edible Plants”. Hacettepe Journal of Biology and Chemistry 45, no. 4 (November 2017): 453-63.
EndNote Antmen M, Tüzmen N, Antep M, Akgöl S (November 1, 2017) Utilization of Hydrophobic Interaction Affinity Nanosorbent For The Extraction Of Serotonin From Edible Plants. Hacettepe Journal of Biology and Chemistry 45 4 453–463.
IEEE M. Antmen, N. Tüzmen, M. Antep, and S. Akgöl, “Utilization of Hydrophobic Interaction Affinity Nanosorbent For The Extraction Of Serotonin From Edible Plants”, HJBC, vol. 45, no. 4, pp. 453–463, 2017.
ISNAD Antmen, Mehmet et al. “Utilization of Hydrophobic Interaction Affinity Nanosorbent For The Extraction Of Serotonin From Edible Plants”. Hacettepe Journal of Biology and Chemistry 45/4 (November 2017), 453-463.
JAMA Antmen M, Tüzmen N, Antep M, Akgöl S. Utilization of Hydrophobic Interaction Affinity Nanosorbent For The Extraction Of Serotonin From Edible Plants. HJBC. 2017;45:453–463.
MLA Antmen, Mehmet et al. “Utilization of Hydrophobic Interaction Affinity Nanosorbent For The Extraction Of Serotonin From Edible Plants”. Hacettepe Journal of Biology and Chemistry, vol. 45, no. 4, 2017, pp. 453-6.
Vancouver Antmen M, Tüzmen N, Antep M, Akgöl S. Utilization of Hydrophobic Interaction Affinity Nanosorbent For The Extraction Of Serotonin From Edible Plants. HJBC. 2017;45(4):453-6.

HACETTEPE JOURNAL OF BIOLOGY AND CHEMİSTRY

Copyright © Hacettepe University Faculty of Science

http://www.hjbc.hacettepe.edu.tr/

https://dergipark.org.tr/tr/pub/hjbc