BibTex RIS Kaynak Göster

Microbial Removal of Cyanide Compounds and Soil Cyanide by K. oxytoca

Yıl 2017, Cilt: 45 Sayı: 4, 523 - 531, 01.11.2017

Öz

In this study, K. oxytoca ATCC 13182 degraded potassium cyanide, potassium hexacyanoferrate II trihydra- te, potassium tetracyanonickelate II hydrate and sodium ferrocyanide decahydrate with the efficiencies of 100%, 87%, 78.5% and 27.5%, respectively. Additionally, optimal conditions for cyanide biodegradation were found as 30°C, 100 rpm and pH=7 at the concentration of 0.5 mM potassium cyanide in the biodegradation medium. Furthermore, K. oxytoca degraded potassium cyanide in the presence of different ions Mg, Ni, Co, Fe, Ca, Cr, As, Cu and Zn and as a result the growth amount of K. oxytoca decreased as the ion concentrations increased. It is also observed that 5:10 v:v concentration of sterile crude extract of K. oxytoca degraded 73.5% of the cyanide content in the biodegradation media in the first 24 hours. Finally, it is examined that 6 mgkg-1 and 240 mgkg-1 cyanide in soil samples were also degraded partially by K. oxytoca’s culture and sterile crude extract.

Kaynakça

  • 1. M. Perumal, J.J. Prabakaron, M. Kamaraj, Isolation and characterization of potential cyanide degrading Bacillus nealsonii from different industrial effluents, International J. Chem. Tech. Res., 5 (2013) 2357-64.
  • 2. V.M. Luque-Almagro, M.J. Huertas, M. MartinezLuque, C. Moreno-Vivian, M.D. Roldan, L.G. Garcia-Gil, F. Castillo, R. Blasco, Bacterial degradation of cyanide and its metal complexes under alkaline conditions, Appl. Environ. Microbiol., 71 (2005) 940-47.
  • 3. R.R., Dash, A. Gaur, C. Balomajumder, Cyanide in industrial wastewaters and its removal: A review on biotreatment, J. Hazard. Mater., 163 (2009) 1-11.
  • 4. A. Bilgin, E. Hasdemir, A. Murathan, Investigation of adsorption parameter effects on the removal of cyanide in water using clinoptilolite, Fresen. Environ. Bull., 23 (2014) 3222-26.
  • 5. G. Asgari, A.M.S. Mohammadi, A. Poormohammadi, M. Ahmadian, Removal of cyanide from aqueous solution by adsorption onto bone charcoal, Fresen. Environ. Bull., 23 (2014) 720-27.
  • 6. C.M. Kao, J.K. Liu, H.R. Lou, C.S. Lin, S.C. Chen, Biotransformation of cyanide to methane and ammonia by Klebsiella oxytoca, Chemosphere, 50 (2003) 1055-61.
  • 7. C.Y. Chen, C.M. Kao, S.C. Chen, Application of Klebsiella oxytoca immobilized cells on the treatment of cyanide wastewater, Chemosphere, 71 (2008) 133- 39.
  • 8. A.Y. Dursun, A. Çalık, Z. Aksu, Degradation of ferrous (II) cyanide complex ions by Pseudomonas fluorescens, Process Biochem., 34 (1999) 901-8.
  • 9. K.D. Chatpawala, G.R.V. Babu, O.K. Vijaya, K.P. Kumar, J.H. Wolfram, Biodegradation of cyanides, cyanates and thiocyanates to ammonia and carbon dioxide by immobilized cells of Pseudomonas putida, J. Ind. Microbiol. Biot., 20 (1998) 28-33.
  • 10. P. Kaewkannetra, T. Imai, F.J. Garcia-Garcia, T.Y. Chiu, Cyanide removal from cassava mill waste water using Azotobacter vinelandii TISTR 1094 with mixed microorganisms in activated sludge treatment system, J. Hazard. Mater., 172 (2009) 224-28.
  • 11. P.R. Meyers, P. Gokool, D.E. Rawlings, D.R. Woods, An efficient cyanide degrading Bacillus pumilus strain, J. Gen. Microbiol., 137 (1991) 1397-1400.
  • 12. M. Santoshkumar, Y. Veeranagouda, K. Lee, T.B. Karegoudar, Utilization of aliphatic nitrile by Paracoccus sp. SKG isolated from chemical waste samples, Int. Biodeter. Biodegr., 65 (2011) 153-59.
  • 13. N.H. Avcioglu, Investigation of Cyanide Biodegradation by Different Klebsiella Strains, PhD thesis (2016), Hacettepe University Faculty of Science, Ankara, Turkey.
  • 14. F.B. Fishier, J.S. Brown, Colorimetric determination of cyanide in stack gas and waste water, Anal. Chem., 24 (1952) 1440-44.
  • 15. A.E. Greenberg, L.S. Clesceri, A.D. Eaton, Standard Methods for the water and waste water, Denver, C.O., USA: American Public Health Association, American Water Works Association and Water Environment Federation, (1992) 1137.
  • 16. C.Y. Chen, C.M. Kao, S.C. Chen, T.Y. Chen, Biodegradation of tetracyanonickelate by Klebsiella oxytoca under anaerobic conditions, Desalination, 249 (2009) 1212-16.
  • 17. H. Yanase, A. Sakamoto, K. Okamoto, K. Kita, Y. Sato, Degradation of the metal-cyano complex tetracyanonickelate(II) by Fusarium oxysporum N-10, Appl. Microbiol. Biot., 53 (2000) 328-34.
  • 18. A.Y. Dursun, Z. Aksu, Effect of internal diffusivity of ferrous(II) cyanide complex ions in Ca-alginate immobilized Pseudomonas fluorescens gel beads on the biodegradation rate, Process Biochem., 37 (2002) 747-52.
  • 19. S. Potivichayanon, R. Kitleartpornpairoat, Biodegradation of cyanide by a novel cyanidedegrading bacterium, World Academy of Science, Engineering and Technology, 42 (2010) 1362-65.
  • 20. C. Wang, D.A. Kunz, B.J. Venables, Incorparation of molecular oxygen and water during enzymatic oxydation of cyanide by Pseudomonas fluorescens NCIMB 11764, Appl. Environ. Microb., 62 (1996) 2195- 97.
  • 21. Y.B. Patil, K.M. Paknikar, Development of a process for detoxification of metal cyanides from waste waters, Process Biochem., 35 (2000) 1139-51.
  • 22. H.K., Kwon, S.H. Woo, J.M. Park, Degradation of tetracyanonickelate(II) by Cryptococcus humicolus MCN2, FEMS Microbiol. Lett., 214 (2002) 211-16.
  • 23. A. Sankaranarayanan, M. Gowthami, Cyanide degradation by consortium of bacterial species isolated from sago industry effluent, Journal of Environmental Treatment Techniques, 3(2015), 41-46.
  • 24. V. Kumar, V. Kumar, T.C. Bhalla, In vitro cyanide degradation by Serratia marcescens RL2b, International J. Environ. Sci., 3 (2013) 1969-79.
  • 25. Z. Aksu, A. Çalık, A.Y. Dursun, Z. Demircan, Biosorption of iron(III) cyanide complex anions to Rhizopus arrhizus: application of adsorption isotherms, Process Biochem., 34 (1999) 483-91.
  • 26. M.R. Samarghandi, M. Ahmadian, J. Mehralipur, A. Shabanlo, A. Poormohammadi, Studies on removal of cyanide from aqueus environments using aluminum electrodes, Fresen. Environ. Bull., 23 (2014) 613-19.
  • 27. M.D. Adjei, Y. Ohta, Factors effecting the biodegradation of cyanide by Burkholderia cepacia strain C-3, J. Biosci. Bioeng., 89 (2000) 274-77.
  • 28. P. Parmar, A. Soni, P. Desai, Enzymatic study of cyanide utilizing Pseudomonas species isolated from contaminated soil, Journal of Scientific and Innovative Research, 2 (2013) 1058-66.
  • 29. J. Baxter, S.P. Cummings, The current and future applications of microorganism in the bioremediation of cyanide contamination, Antonie van Leeuwenhoek, 90 (2006) 1-17. 30. C.J. Knowles, Microorganisms and cyanide, Bacteriol. Rev., 40 (1976) 652-80.
  • 31. M. Zagrobelny, S. Bak, B.L. Moller, Cyanogenesis in plants and arthropods, Phytochemistry, 69 (2008) 1457-68.
  • 32. R.J. Kremer, T. Souissi, Cyanide production by Rhizobacteria and potential for suppression of weed seedling growth, Curr. Microbiol., 43 (2001) 182-86.
  • 33. G.M. Wong-Chong, D.V. Nakles, R.G. Luthy, Manufacture and the Use of Cyanide. In: D.A. Dzombak, R.S. Ghosh, G.M. Wong-Chong, editors. Cyanide in Water and Soil, Chemistry, Risk and Management. Boca Raton: Taylor&Francis, Vol. 4 (2006), 43-44.
  • 34. L.Y. Hong, M.K. Banks, A.P. Schwab, Removal of cyanide contaminants from Rhizosphere Soil, Bioremediation J., 12 (2008) 210-15.
  • 35. M. Ebel, M.W.H. Evangelou, A. Schaeffer, Cyanide phytoremediation by water hyacinths (Eichornia crassipes), Chemosphere, 66 (2007) 816-23.
  • 36. X.Z. Yu, J.D. Gu, L. Li, Assimilation and physiological effects of ferrocyanide on weeping willows, Ecotoxical Environ. Safe., 71 (2008) 609-15.
  • 37. X.Z. Yu, JD. Gu, Differences in Michaelis-Menten kinetics for different cultivars of maize during cyanide removal. Ecotox. Environ. Safe., 67 (2007) 254-59.
  • 38. O. Nwokoro, M.E.U. Dibua, Degradation of soil cyanide by single and mixed cultures of Pseudomonas stutzeri and Bacillus subtilis, Archives of Industrial Hygiene and Toxicology, 65 (2014) 113-19.

Siyanür Bileşiklerinin ve Topraktaki Siyanürün Klebsiella oxytoca ile Mikrobiyal Giderimi

Yıl 2017, Cilt: 45 Sayı: 4, 523 - 531, 01.11.2017

Öz

B u çalışmada, Klebsiella oxytoca ATCC 13182 suşunun potasyum siyanür, potasyum hekzasiyanoferrat II trihidrat, potasyum tetrasiyanonikelat II hidrat ve sodyum ferrosiyanür dekahidratı sırasıyla %100, %87, %78.5 ve %27.5 oranında bozunduğu belirlendi. Buna ek olarak, siyanür biyobozunma optimal koşullar 0.5 mM derişimde potasyum siyanür içeren biyobozunma besiyerinde, 30°C, 100 rpm ve pH 7.0 olarak bulundu. Ayrıca, K. oxytoca potasyum siyanürü farklı iyonların varlığında da Mg, Ni, Co, Fe, Ca, Cr, As, Cu ve Zn yıktığı gözlendi ve sonuç olarak K. oxytoca’nın üreme miktarının iyon derişimi arttıkça azalma gösterdiği belirlendi. K. oxytoca’nın 5:10 h:h derişimdeki steril kültür süpernatanının da ilk 24 saatte biyobozunma besiyerindeki siyanürün %73.5’ünü parçaladıgı gözlendi. Son olarak, K. oxytoca kültür ve steril kültür süpernatanının 6 mgkg1 ve 240 mgkg-1 siyanür içeren toprak örneklerindeki siyanürü de kısmen bozunmaya uğratabildiği belirlendi

Kaynakça

  • 1. M. Perumal, J.J. Prabakaron, M. Kamaraj, Isolation and characterization of potential cyanide degrading Bacillus nealsonii from different industrial effluents, International J. Chem. Tech. Res., 5 (2013) 2357-64.
  • 2. V.M. Luque-Almagro, M.J. Huertas, M. MartinezLuque, C. Moreno-Vivian, M.D. Roldan, L.G. Garcia-Gil, F. Castillo, R. Blasco, Bacterial degradation of cyanide and its metal complexes under alkaline conditions, Appl. Environ. Microbiol., 71 (2005) 940-47.
  • 3. R.R., Dash, A. Gaur, C. Balomajumder, Cyanide in industrial wastewaters and its removal: A review on biotreatment, J. Hazard. Mater., 163 (2009) 1-11.
  • 4. A. Bilgin, E. Hasdemir, A. Murathan, Investigation of adsorption parameter effects on the removal of cyanide in water using clinoptilolite, Fresen. Environ. Bull., 23 (2014) 3222-26.
  • 5. G. Asgari, A.M.S. Mohammadi, A. Poormohammadi, M. Ahmadian, Removal of cyanide from aqueous solution by adsorption onto bone charcoal, Fresen. Environ. Bull., 23 (2014) 720-27.
  • 6. C.M. Kao, J.K. Liu, H.R. Lou, C.S. Lin, S.C. Chen, Biotransformation of cyanide to methane and ammonia by Klebsiella oxytoca, Chemosphere, 50 (2003) 1055-61.
  • 7. C.Y. Chen, C.M. Kao, S.C. Chen, Application of Klebsiella oxytoca immobilized cells on the treatment of cyanide wastewater, Chemosphere, 71 (2008) 133- 39.
  • 8. A.Y. Dursun, A. Çalık, Z. Aksu, Degradation of ferrous (II) cyanide complex ions by Pseudomonas fluorescens, Process Biochem., 34 (1999) 901-8.
  • 9. K.D. Chatpawala, G.R.V. Babu, O.K. Vijaya, K.P. Kumar, J.H. Wolfram, Biodegradation of cyanides, cyanates and thiocyanates to ammonia and carbon dioxide by immobilized cells of Pseudomonas putida, J. Ind. Microbiol. Biot., 20 (1998) 28-33.
  • 10. P. Kaewkannetra, T. Imai, F.J. Garcia-Garcia, T.Y. Chiu, Cyanide removal from cassava mill waste water using Azotobacter vinelandii TISTR 1094 with mixed microorganisms in activated sludge treatment system, J. Hazard. Mater., 172 (2009) 224-28.
  • 11. P.R. Meyers, P. Gokool, D.E. Rawlings, D.R. Woods, An efficient cyanide degrading Bacillus pumilus strain, J. Gen. Microbiol., 137 (1991) 1397-1400.
  • 12. M. Santoshkumar, Y. Veeranagouda, K. Lee, T.B. Karegoudar, Utilization of aliphatic nitrile by Paracoccus sp. SKG isolated from chemical waste samples, Int. Biodeter. Biodegr., 65 (2011) 153-59.
  • 13. N.H. Avcioglu, Investigation of Cyanide Biodegradation by Different Klebsiella Strains, PhD thesis (2016), Hacettepe University Faculty of Science, Ankara, Turkey.
  • 14. F.B. Fishier, J.S. Brown, Colorimetric determination of cyanide in stack gas and waste water, Anal. Chem., 24 (1952) 1440-44.
  • 15. A.E. Greenberg, L.S. Clesceri, A.D. Eaton, Standard Methods for the water and waste water, Denver, C.O., USA: American Public Health Association, American Water Works Association and Water Environment Federation, (1992) 1137.
  • 16. C.Y. Chen, C.M. Kao, S.C. Chen, T.Y. Chen, Biodegradation of tetracyanonickelate by Klebsiella oxytoca under anaerobic conditions, Desalination, 249 (2009) 1212-16.
  • 17. H. Yanase, A. Sakamoto, K. Okamoto, K. Kita, Y. Sato, Degradation of the metal-cyano complex tetracyanonickelate(II) by Fusarium oxysporum N-10, Appl. Microbiol. Biot., 53 (2000) 328-34.
  • 18. A.Y. Dursun, Z. Aksu, Effect of internal diffusivity of ferrous(II) cyanide complex ions in Ca-alginate immobilized Pseudomonas fluorescens gel beads on the biodegradation rate, Process Biochem., 37 (2002) 747-52.
  • 19. S. Potivichayanon, R. Kitleartpornpairoat, Biodegradation of cyanide by a novel cyanidedegrading bacterium, World Academy of Science, Engineering and Technology, 42 (2010) 1362-65.
  • 20. C. Wang, D.A. Kunz, B.J. Venables, Incorparation of molecular oxygen and water during enzymatic oxydation of cyanide by Pseudomonas fluorescens NCIMB 11764, Appl. Environ. Microb., 62 (1996) 2195- 97.
  • 21. Y.B. Patil, K.M. Paknikar, Development of a process for detoxification of metal cyanides from waste waters, Process Biochem., 35 (2000) 1139-51.
  • 22. H.K., Kwon, S.H. Woo, J.M. Park, Degradation of tetracyanonickelate(II) by Cryptococcus humicolus MCN2, FEMS Microbiol. Lett., 214 (2002) 211-16.
  • 23. A. Sankaranarayanan, M. Gowthami, Cyanide degradation by consortium of bacterial species isolated from sago industry effluent, Journal of Environmental Treatment Techniques, 3(2015), 41-46.
  • 24. V. Kumar, V. Kumar, T.C. Bhalla, In vitro cyanide degradation by Serratia marcescens RL2b, International J. Environ. Sci., 3 (2013) 1969-79.
  • 25. Z. Aksu, A. Çalık, A.Y. Dursun, Z. Demircan, Biosorption of iron(III) cyanide complex anions to Rhizopus arrhizus: application of adsorption isotherms, Process Biochem., 34 (1999) 483-91.
  • 26. M.R. Samarghandi, M. Ahmadian, J. Mehralipur, A. Shabanlo, A. Poormohammadi, Studies on removal of cyanide from aqueus environments using aluminum electrodes, Fresen. Environ. Bull., 23 (2014) 613-19.
  • 27. M.D. Adjei, Y. Ohta, Factors effecting the biodegradation of cyanide by Burkholderia cepacia strain C-3, J. Biosci. Bioeng., 89 (2000) 274-77.
  • 28. P. Parmar, A. Soni, P. Desai, Enzymatic study of cyanide utilizing Pseudomonas species isolated from contaminated soil, Journal of Scientific and Innovative Research, 2 (2013) 1058-66.
  • 29. J. Baxter, S.P. Cummings, The current and future applications of microorganism in the bioremediation of cyanide contamination, Antonie van Leeuwenhoek, 90 (2006) 1-17. 30. C.J. Knowles, Microorganisms and cyanide, Bacteriol. Rev., 40 (1976) 652-80.
  • 31. M. Zagrobelny, S. Bak, B.L. Moller, Cyanogenesis in plants and arthropods, Phytochemistry, 69 (2008) 1457-68.
  • 32. R.J. Kremer, T. Souissi, Cyanide production by Rhizobacteria and potential for suppression of weed seedling growth, Curr. Microbiol., 43 (2001) 182-86.
  • 33. G.M. Wong-Chong, D.V. Nakles, R.G. Luthy, Manufacture and the Use of Cyanide. In: D.A. Dzombak, R.S. Ghosh, G.M. Wong-Chong, editors. Cyanide in Water and Soil, Chemistry, Risk and Management. Boca Raton: Taylor&Francis, Vol. 4 (2006), 43-44.
  • 34. L.Y. Hong, M.K. Banks, A.P. Schwab, Removal of cyanide contaminants from Rhizosphere Soil, Bioremediation J., 12 (2008) 210-15.
  • 35. M. Ebel, M.W.H. Evangelou, A. Schaeffer, Cyanide phytoremediation by water hyacinths (Eichornia crassipes), Chemosphere, 66 (2007) 816-23.
  • 36. X.Z. Yu, J.D. Gu, L. Li, Assimilation and physiological effects of ferrocyanide on weeping willows, Ecotoxical Environ. Safe., 71 (2008) 609-15.
  • 37. X.Z. Yu, JD. Gu, Differences in Michaelis-Menten kinetics for different cultivars of maize during cyanide removal. Ecotox. Environ. Safe., 67 (2007) 254-59.
  • 38. O. Nwokoro, M.E.U. Dibua, Degradation of soil cyanide by single and mixed cultures of Pseudomonas stutzeri and Bacillus subtilis, Archives of Industrial Hygiene and Toxicology, 65 (2014) 113-19.
Toplam 37 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Research Article
Yazarlar

Nermin Hande Avcıoğlu Bu kişi benim

Işıl Seyis Bilkay Bu kişi benim

Yayımlanma Tarihi 1 Kasım 2017
Yayımlandığı Sayı Yıl 2017 Cilt: 45 Sayı: 4

Kaynak Göster

APA Avcıoğlu, N. H., & Bilkay, I. S. (2017). Siyanür Bileşiklerinin ve Topraktaki Siyanürün Klebsiella oxytoca ile Mikrobiyal Giderimi. Hacettepe Journal of Biology and Chemistry, 45(4), 523-531.
AMA Avcıoğlu NH, Bilkay IS. Siyanür Bileşiklerinin ve Topraktaki Siyanürün Klebsiella oxytoca ile Mikrobiyal Giderimi. HJBC. Kasım 2017;45(4):523-531.
Chicago Avcıoğlu, Nermin Hande, ve Işıl Seyis Bilkay. “Siyanür Bileşiklerinin Ve Topraktaki Siyanürün Klebsiella Oxytoca Ile Mikrobiyal Giderimi”. Hacettepe Journal of Biology and Chemistry 45, sy. 4 (Kasım 2017): 523-31.
EndNote Avcıoğlu NH, Bilkay IS (01 Kasım 2017) Siyanür Bileşiklerinin ve Topraktaki Siyanürün Klebsiella oxytoca ile Mikrobiyal Giderimi. Hacettepe Journal of Biology and Chemistry 45 4 523–531.
IEEE N. H. Avcıoğlu ve I. S. Bilkay, “Siyanür Bileşiklerinin ve Topraktaki Siyanürün Klebsiella oxytoca ile Mikrobiyal Giderimi”, HJBC, c. 45, sy. 4, ss. 523–531, 2017.
ISNAD Avcıoğlu, Nermin Hande - Bilkay, Işıl Seyis. “Siyanür Bileşiklerinin Ve Topraktaki Siyanürün Klebsiella Oxytoca Ile Mikrobiyal Giderimi”. Hacettepe Journal of Biology and Chemistry 45/4 (Kasım 2017), 523-531.
JAMA Avcıoğlu NH, Bilkay IS. Siyanür Bileşiklerinin ve Topraktaki Siyanürün Klebsiella oxytoca ile Mikrobiyal Giderimi. HJBC. 2017;45:523–531.
MLA Avcıoğlu, Nermin Hande ve Işıl Seyis Bilkay. “Siyanür Bileşiklerinin Ve Topraktaki Siyanürün Klebsiella Oxytoca Ile Mikrobiyal Giderimi”. Hacettepe Journal of Biology and Chemistry, c. 45, sy. 4, 2017, ss. 523-31.
Vancouver Avcıoğlu NH, Bilkay IS. Siyanür Bileşiklerinin ve Topraktaki Siyanürün Klebsiella oxytoca ile Mikrobiyal Giderimi. HJBC. 2017;45(4):523-31.

HACETTEPE JOURNAL OF BIOLOGY AND CHEMİSTRY

Copyright © Hacettepe University Faculty of Science

http://www.hjbc.hacettepe.edu.tr/

https://dergipark.org.tr/tr/pub/hjbc