Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2021, , 233 - 242, 17.05.2021
https://doi.org/10.15671/hjbc.696762

Öz

Kaynakça

  • 1. A. Patel, L. Matsakas, U. Rova, P. Christakopoulos, A Perspective on Biotechnological Applications of Thermophilic Microalgae and Cyanobacteria, Biores. Technol., 278 (2019) 424-434.
  • 2. S. Dobretsov, R.M.M. Abed, S.M.S. Al Maskari, J.N. Al Sabahi, R. Victor, Cyanobacterial Mats from Hot Springs Produce Antimicrobial Compounds and Quorum-sensing Inhibitors Under Natural Conditions, J. Appl. Phycol., 23, (2011) 983–993.
  • 3. A. Drobac-Čik, T.I. Dulic, D.B. Stojanovic, Z.B. Svircev, The Importance of Extremophile Cyanobacteria in the Production of Biologically Active Compounds, Matica Srpska J. Nat. Sci., 112, (2007) 57-66.
  • 4. C. Pumas, P. Vacharapiyasophon, Y. Peerapornpisal, P. Leelapornpisid, W. Boonchum, M. Ishii, C. Khanongnuch, Thermostablility of Phycobiliproteins and Antioxidant Activity from Four Thermotolerant Cyanobacteria, Phycol. Res., 59, (2011) 166–174.
  • 5. N. Mezhoud, F. Zili,, N. Bouzidi, F. Helaoui, J. Ammar, H.B. Ouada, The Effects of Temperature and Light Intensity on Growth, Reproduction and EPS Synthesis of a Thermophilic Strain Related to The Genus Grasiella, Bioproc. Biosyst. Eng., 37(11) (2014) 2271-2280.
  • 6. J-L. Leu, T-H. Lin, M.J.P. Selvamani, H-C. Chen, J-Z. Liang, K-M. Pan, Characterization of a Novel Thermophilic Cyanobacterial Strain from Taian Hot Springs in Taiwan for High CO2 Mitigation and C-phycocyanin Extraction, Process Biochem., 48 (2013) 41–48.
  • 7. S.A. Fish, G.A. Codd, Bioactive Compound Production by Thermophilic and Thermotolerant Cyanobacteria (blue-green algae), W. J. Microbiol. Biotechnol., 10 (1994) 338-341.
  • 8. F. Heidari, H. Riahi, M. Yousefzadi, M. Asadi, Antimicrobial Activity of Cyanobacteria Isolated from Hot Spring of Geno, Middle-East J. Sci. Res., 12(3) (2012) 336-339.
  • 9. R. Challouf, R. Ben Dhieb, H. Omrane, K. Ghozzi, H. Ben Ouada, Antibacterial, Antioxidant and Cytotoxic Activities of Extracts from the Thermophilic Green Alga, Cosmarium sp., Afr. J. Biotechnol., 11(82) (2012) 14844-14849.
  • 10. P. Mizerakis, P. Stathopoulou, G. Tsiamis, M.N. Baeshen, J.A. Mahyoub, A.M. Elazzazy, S. Bellou, E. Sakoulogeorga, I-E. Triantaphyllidou, T. Mazioti, P. Katsoris, G. Aggelis, Bacterial Diversity of the Outflows of a Polichnitos (Lesvos, Greece) Hot Spring, Laboratory Studies of a Cyanobacterium sp. Strain and Potential Medical Applications, Ann. Microbiol., 67 (2017) 643–654.
  • 11. M.S., Urbieta, E.R., Donati, K-G., Chan, S., Shahar, L.L., Sin, K.M. Goh, Thermophiles in the Genomic Era: Biodiversity, Science, and Applications. Biotechnol. Adv., 33 (2015) 633–647.
  • 12. R. Rippka, Recognition and Identification of Cyanobacteria. Method Enzymol., 167 (1988) 28-67.
  • 13. A.R. Rao, A.H. Reddy, S.M. Aradhya, Antibacterial Properties of Spirulina platensis, Haematococcus pluvialis, Botryococcus braunii Micro Algal Extracts, Curr. Trend Biotechnol. Pharm., 4(3) (2010) 809-819.
  • 14. J. Pradhan, B.K. Das, S. Sahu, N.P. Marhual, A.K. Swain, B.K. Mishra, A.E. Eknath, Traditional Antibacterial Activity of Freshwater Microalga Spirulina platensis to Aquatic Pathogens, Aquac. Res., 43 (2012) 1287–1295.
  • 15. P.R. Murray, E.J. Baron, M.A. Pfalle, F.C. Tenover, R.H. Yolke, Manual of Clinical Microbiology (6th ed.) Washington, DC, United States, ASM Press., (1995) 1482 pp.
  • 16. R.J. Porra, W.A. Thompson, P.E. Kreidemann, Determination of Accurate Extinction Coefficients and Simultaneous Equations for Assaying Chlorophylls a and b Extracted with Four Different Solvents: Verification of The Concentration of Chlorophyll Standards by Atomic Absorption Spectroscopy, BBA-Bioenergetics, 975, 3 (1989) 84–394.
  • 17. T.C. Hopkins, E.J.S. Graham, J. Schwilling, S. Ingram, S.M. Gómez, A.J. Schuler, Effects of Salinity and Nitrogen Source on Growth and Lipid Production for a Wild Algal Polyculture in Produced Water Media, Algal Res., 38 (2019) 101436
  • 18. K-C. Wu, K-C. Ho, C-C. Tang, Y-H. Yau, The Potential of Foodwaste Leachate as A Phycoremediation Substrate for Microalgal CO2 Fixation and Biodiesel Production, Environ. Sci. Poll. R., (2018). https://doi.org/10.1007/s11356-018-1242-9
  • 19. S.E. Karatay, G. Dönmez, Microbial Oil Production from Thermophile Cyanobacteria for Biodiesel Production, Appl. Energy, 88 (2011) 3632–3635.
  • 20. B. Gris, E. Sforza, T. Morosinotto, A. Bertucco, N. La Rocca, Influence of Light and Temperature on Growth and High-value Molecules Productivity from Cyanobacterium aponinum, J. Appl. Phycol., 29 (2017) 1781–1790.
  • 21. F. Meng, H., Cui, Y., Wang, X. Li, Responses of A New Isolated Cyanobacterium aponinum Strain to Temperature, pH, CO2 and Light Quality, J. Appl. Phycol., 30 (2018). 1525–1532.
  • 22. M.G. de Morais, B. da Silva Vaz., E.G. de Morais, J.A. Costa, Biologically Active Metabolites Synthesized by Microalgae, Biomed Res. Int., Article ID 835761 (2015) 1-15.
  • 23. N.H. Noaman, A. Fattah, M. Khaleafa, S.H. Zaky, Factors Affecting Antimicrobial Activity of Synechococcus leopoliensis, Microbiol. Res., 159 (2004) 395-402.

Bioactive Compound Activity Inducement of Thermophile Cyanobacterium aponinum Under Stress Conditions

Yıl 2021, , 233 - 242, 17.05.2021
https://doi.org/10.15671/hjbc.696762

Öz

Bu çalışmada, Türkiye'de kaplıcalardan izole edilen 7 termofil siyanobakterinin biyoaktif özellikleri araştırılmıştır. Bunlardan en yüksek antimikrobiyel aktiviteye sahip olan Suş H2, Cyanobacterium aponium olarak tanılanmıştır. Siyanobakteriyel biyokütlenin biyoaktif karakteri, farklı azot konsantrasyonları (0.5 g/L, 1.0 g/L, 1.5 g/L ve 2.0 g/L), ışık yoğunlukları (1200lx, 2400 lx, 3600 lx ve 4800 lx), inkübasyon süreleri (7 gün, 14 gün, 21 gün ve 28 gün) ve sıcaklıklar (30 °C, 40 °C, 45 °C ve 50 °C) açısından araştırılmıştır. Siyanobakteriler tarafından üretilen biyoaktif maddelerin etkinliğinin stres koşulları tarafından tetiklendiği gözlenmiştir. C. aponinum yüksek ışık yoğunluğuna veya sıcaklığa maruz kaldığında, siyanobakteriler test edilen diğer çevresel koşullardan daha verimli biyoaktif bileşikler üretmiştir. En yüksek antimikrobiyel aktivite, siyanobakteri 1.0 g/L azot içeren bir ortamda, 3600 lx ışık şiddeti altında, 45 °C'de 14 gün boyunca inkübasyondan sonra elde edilen biyokütleden alınan ekstraktlar ile E. coli 0157: H7 ATCC 35150'ye karşı bulunmuştur. Bu çalışmada ilk kez böyle bir yaklaşımla, termofilik C. aponinum tarafından biyoaktif bileşiklerin üretilmesi ve en etkin biyoaktif bileşikleri elde etmek için çevresel koşulların optimizasyonu araştırılmıştır.

Kaynakça

  • 1. A. Patel, L. Matsakas, U. Rova, P. Christakopoulos, A Perspective on Biotechnological Applications of Thermophilic Microalgae and Cyanobacteria, Biores. Technol., 278 (2019) 424-434.
  • 2. S. Dobretsov, R.M.M. Abed, S.M.S. Al Maskari, J.N. Al Sabahi, R. Victor, Cyanobacterial Mats from Hot Springs Produce Antimicrobial Compounds and Quorum-sensing Inhibitors Under Natural Conditions, J. Appl. Phycol., 23, (2011) 983–993.
  • 3. A. Drobac-Čik, T.I. Dulic, D.B. Stojanovic, Z.B. Svircev, The Importance of Extremophile Cyanobacteria in the Production of Biologically Active Compounds, Matica Srpska J. Nat. Sci., 112, (2007) 57-66.
  • 4. C. Pumas, P. Vacharapiyasophon, Y. Peerapornpisal, P. Leelapornpisid, W. Boonchum, M. Ishii, C. Khanongnuch, Thermostablility of Phycobiliproteins and Antioxidant Activity from Four Thermotolerant Cyanobacteria, Phycol. Res., 59, (2011) 166–174.
  • 5. N. Mezhoud, F. Zili,, N. Bouzidi, F. Helaoui, J. Ammar, H.B. Ouada, The Effects of Temperature and Light Intensity on Growth, Reproduction and EPS Synthesis of a Thermophilic Strain Related to The Genus Grasiella, Bioproc. Biosyst. Eng., 37(11) (2014) 2271-2280.
  • 6. J-L. Leu, T-H. Lin, M.J.P. Selvamani, H-C. Chen, J-Z. Liang, K-M. Pan, Characterization of a Novel Thermophilic Cyanobacterial Strain from Taian Hot Springs in Taiwan for High CO2 Mitigation and C-phycocyanin Extraction, Process Biochem., 48 (2013) 41–48.
  • 7. S.A. Fish, G.A. Codd, Bioactive Compound Production by Thermophilic and Thermotolerant Cyanobacteria (blue-green algae), W. J. Microbiol. Biotechnol., 10 (1994) 338-341.
  • 8. F. Heidari, H. Riahi, M. Yousefzadi, M. Asadi, Antimicrobial Activity of Cyanobacteria Isolated from Hot Spring of Geno, Middle-East J. Sci. Res., 12(3) (2012) 336-339.
  • 9. R. Challouf, R. Ben Dhieb, H. Omrane, K. Ghozzi, H. Ben Ouada, Antibacterial, Antioxidant and Cytotoxic Activities of Extracts from the Thermophilic Green Alga, Cosmarium sp., Afr. J. Biotechnol., 11(82) (2012) 14844-14849.
  • 10. P. Mizerakis, P. Stathopoulou, G. Tsiamis, M.N. Baeshen, J.A. Mahyoub, A.M. Elazzazy, S. Bellou, E. Sakoulogeorga, I-E. Triantaphyllidou, T. Mazioti, P. Katsoris, G. Aggelis, Bacterial Diversity of the Outflows of a Polichnitos (Lesvos, Greece) Hot Spring, Laboratory Studies of a Cyanobacterium sp. Strain and Potential Medical Applications, Ann. Microbiol., 67 (2017) 643–654.
  • 11. M.S., Urbieta, E.R., Donati, K-G., Chan, S., Shahar, L.L., Sin, K.M. Goh, Thermophiles in the Genomic Era: Biodiversity, Science, and Applications. Biotechnol. Adv., 33 (2015) 633–647.
  • 12. R. Rippka, Recognition and Identification of Cyanobacteria. Method Enzymol., 167 (1988) 28-67.
  • 13. A.R. Rao, A.H. Reddy, S.M. Aradhya, Antibacterial Properties of Spirulina platensis, Haematococcus pluvialis, Botryococcus braunii Micro Algal Extracts, Curr. Trend Biotechnol. Pharm., 4(3) (2010) 809-819.
  • 14. J. Pradhan, B.K. Das, S. Sahu, N.P. Marhual, A.K. Swain, B.K. Mishra, A.E. Eknath, Traditional Antibacterial Activity of Freshwater Microalga Spirulina platensis to Aquatic Pathogens, Aquac. Res., 43 (2012) 1287–1295.
  • 15. P.R. Murray, E.J. Baron, M.A. Pfalle, F.C. Tenover, R.H. Yolke, Manual of Clinical Microbiology (6th ed.) Washington, DC, United States, ASM Press., (1995) 1482 pp.
  • 16. R.J. Porra, W.A. Thompson, P.E. Kreidemann, Determination of Accurate Extinction Coefficients and Simultaneous Equations for Assaying Chlorophylls a and b Extracted with Four Different Solvents: Verification of The Concentration of Chlorophyll Standards by Atomic Absorption Spectroscopy, BBA-Bioenergetics, 975, 3 (1989) 84–394.
  • 17. T.C. Hopkins, E.J.S. Graham, J. Schwilling, S. Ingram, S.M. Gómez, A.J. Schuler, Effects of Salinity and Nitrogen Source on Growth and Lipid Production for a Wild Algal Polyculture in Produced Water Media, Algal Res., 38 (2019) 101436
  • 18. K-C. Wu, K-C. Ho, C-C. Tang, Y-H. Yau, The Potential of Foodwaste Leachate as A Phycoremediation Substrate for Microalgal CO2 Fixation and Biodiesel Production, Environ. Sci. Poll. R., (2018). https://doi.org/10.1007/s11356-018-1242-9
  • 19. S.E. Karatay, G. Dönmez, Microbial Oil Production from Thermophile Cyanobacteria for Biodiesel Production, Appl. Energy, 88 (2011) 3632–3635.
  • 20. B. Gris, E. Sforza, T. Morosinotto, A. Bertucco, N. La Rocca, Influence of Light and Temperature on Growth and High-value Molecules Productivity from Cyanobacterium aponinum, J. Appl. Phycol., 29 (2017) 1781–1790.
  • 21. F. Meng, H., Cui, Y., Wang, X. Li, Responses of A New Isolated Cyanobacterium aponinum Strain to Temperature, pH, CO2 and Light Quality, J. Appl. Phycol., 30 (2018). 1525–1532.
  • 22. M.G. de Morais, B. da Silva Vaz., E.G. de Morais, J.A. Costa, Biologically Active Metabolites Synthesized by Microalgae, Biomed Res. Int., Article ID 835761 (2015) 1-15.
  • 23. N.H. Noaman, A. Fattah, M. Khaleafa, S.H. Zaky, Factors Affecting Antimicrobial Activity of Synechococcus leopoliensis, Microbiol. Res., 159 (2004) 395-402.
Toplam 23 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Research Article
Yazarlar

Nur Koçberber Kılıç 0000-0003-2668-3789

Gönül Dönmez 0000-0001-7972-5570

Yayımlanma Tarihi 17 Mayıs 2021
Kabul Tarihi 24 Aralık 2020
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Koçberber Kılıç, N., & Dönmez, G. (2021). Bioactive Compound Activity Inducement of Thermophile Cyanobacterium aponinum Under Stress Conditions. Hacettepe Journal of Biology and Chemistry, 49(3), 233-242. https://doi.org/10.15671/hjbc.696762
AMA Koçberber Kılıç N, Dönmez G. Bioactive Compound Activity Inducement of Thermophile Cyanobacterium aponinum Under Stress Conditions. HJBC. Mayıs 2021;49(3):233-242. doi:10.15671/hjbc.696762
Chicago Koçberber Kılıç, Nur, ve Gönül Dönmez. “Bioactive Compound Activity Inducement of Thermophile Cyanobacterium Aponinum Under Stress Conditions”. Hacettepe Journal of Biology and Chemistry 49, sy. 3 (Mayıs 2021): 233-42. https://doi.org/10.15671/hjbc.696762.
EndNote Koçberber Kılıç N, Dönmez G (01 Mayıs 2021) Bioactive Compound Activity Inducement of Thermophile Cyanobacterium aponinum Under Stress Conditions. Hacettepe Journal of Biology and Chemistry 49 3 233–242.
IEEE N. Koçberber Kılıç ve G. Dönmez, “Bioactive Compound Activity Inducement of Thermophile Cyanobacterium aponinum Under Stress Conditions”, HJBC, c. 49, sy. 3, ss. 233–242, 2021, doi: 10.15671/hjbc.696762.
ISNAD Koçberber Kılıç, Nur - Dönmez, Gönül. “Bioactive Compound Activity Inducement of Thermophile Cyanobacterium Aponinum Under Stress Conditions”. Hacettepe Journal of Biology and Chemistry 49/3 (Mayıs 2021), 233-242. https://doi.org/10.15671/hjbc.696762.
JAMA Koçberber Kılıç N, Dönmez G. Bioactive Compound Activity Inducement of Thermophile Cyanobacterium aponinum Under Stress Conditions. HJBC. 2021;49:233–242.
MLA Koçberber Kılıç, Nur ve Gönül Dönmez. “Bioactive Compound Activity Inducement of Thermophile Cyanobacterium Aponinum Under Stress Conditions”. Hacettepe Journal of Biology and Chemistry, c. 49, sy. 3, 2021, ss. 233-42, doi:10.15671/hjbc.696762.
Vancouver Koçberber Kılıç N, Dönmez G. Bioactive Compound Activity Inducement of Thermophile Cyanobacterium aponinum Under Stress Conditions. HJBC. 2021;49(3):233-42.

HACETTEPE JOURNAL OF BIOLOGY AND CHEMİSTRY

Copyright © Hacettepe University Faculty of Science

http://www.hjbc.hacettepe.edu.tr/

https://dergipark.org.tr/tr/pub/hjbc