Araştırma Makalesi
BibTex RIS Kaynak Göster

Development of Iridium Based Fluorimetric Method for Determination of Cystein

Yıl 2021, Sayı: 4, 355 - 365, 25.05.2021
https://doi.org/10.15671/hjbc.798021

Öz

Tiyol grupları içeren aminoasitler olarak Sistein (Cys) ve homosistein (Hcy) biyolojik sistemlerde birçok önemli rol oynamaktadır. HCy’nin plazma seviyesinin, kardiyovasküler ve Alzheimer gibi bazı hastalıkların bir göstergesi olduğu bilinmektedir. Plazmadaki Cys eksikliği karaciğer hasarı, kas ve yağ kaybı, cilt lezyonları, yavaş büyüme vb. Gibi durumlarla ilişkilidir. Bu çalışmada, Cys seviyelerinin belirlenmesi için floresan tabanlı bir metot geliştirilmek üzere yüksek fotolüminesans etkinlik gösteren iridium kompleksleri seçilmiştir. Daha sonra sentezlenen kompleks, Cys çözeltileriyle etkileştirilmiştir. İridyum kompleksiyle etkileşen Cys derişimi arttıkça çözeltinin floresans şiddetinin de arttığı bulunmuştur. Buradan yola çıkarak, sentezlenen iridyum kompleksinin, serum örneklerinde Cys seviyesinin florimetrik tayininde kullanılabileceği düşünülmektedir.

Kaynakça

  • 1. Y. Sun, M. X. Yu, S. Liang, Y. J. Zhang, C. G. Li, T. T. Mou, W. J. Yang, X. Z. Zhang, B. Li and F. Y. Li, Fluorine-18 labeled rare-earth nanoparticles for positron emission tomography (PET) imaging of sentinel lymoh node, Biomaterials, 32 (2011) 2999-3007. doi: 10.1016/j.biomaterials.2011.01.011.
  • 2. T. Y. Cao, Y. Yang, Y. Gao, J. Zhou, Z. Li, F. Y. Li, High-quality water soluble and surface-functionalized upconversion nanocrystals as luminescent probes for bioimaging, Biomaterials, 32 (2011) 2959-2968. doi: 10.1016/j.biomaterials.2010.12.050.
  • 3. M. Jr. Bruchez, M. Moronne, P. Gin, S. Weiss, A. P. Alivisatos,Semiconductor nanocrystals as fluorescent biological labels, Science, 281 (1998) 2013-2016. doi: 10.1126/science.281.5385.2013.
  • 4. W. C. W. Chan, S. Nie,Quantum dot Bioconjugates for Ultrasensitive Nonisotopic Detection, Science, 281,(1998), 2016-2018. doi: 10.1126/science.281.5385.2016
  • 5. B. Dubertret, P. Skourides, D. J. Norris, V. Noireaux, A. H. Brivanlou ,A. Libchaber, In vivo imaging of quantum dots encapsulated in phospholipid micelles Science, 298, (2002), 1759-1762. doi: 10.1126/science.1077194.
  • 6. I. L. Medintz, H. T. Uyeda, E. R. Goldman, H. Mattoussi, Quantum dot bioconjugates for imaging, labelling and sensing, Nat. Mater., (4), 2005, 435-446. doi: 10.1038/nmat1390.
  • 7. J. Escobedo, O. Rusin, S. Lim, R.M.Strongin. NIR Dyes for Bioimaging Applications. Current opinion in chemical biology 14(1), (2009), 64-70. doi: 10.1016/j.cbpa.2009.10.022
  • 8. C. H. Huang, F. Y. Li, W. Huang, Intruduction to Organic Light-Emitting Materials and Devices, Press of Fudan University, Shanghai, 2005.
  • 9. Y. Ma, S. Liu, Y Wu, C Yang, X Liu, Q.Zhao, H. Wu, J. Liang, F. Li, W. Huang. Water-soluble phosphorescent iridium(iii) complexes as multicolor probes for imaging of homocysteine and cysteine in living cells J. Mater. Chem., (21) 2011, 18974-18982. doi: 10.1039/C1JM13513A.
  • 10. W.S. Speidl, M. Nikfardjam, A. Niessner Mild hyperhomocysteinemia is associated with a decreased fibrinolytic activity in patients after ST-elevation myocardial infarction. Thromb Res 119(3), (2007), 331–336.
  • 11. S. Kostić, Ž Mićovic, L Andrejević,.The effects of L-cysteine and N-acetyl-L-cysteine on homocysteine metabolism and haemostatic markers, and on cardiac and aortic histology in subchronically methionine-treated Wistar male rats. Mol Cell Biochem 451 (2019),43-54. doi: 10.1007/s11010-018-3391-z
  • 12. P.M. Ueland, M.A. Mansoor, A.B. Guttormsen. Reduced, oxidized and protein-bound forms of homocysteine and other aminothiols in plasma comprise the redox thiols status—a possible element of the extracellular antioxidant defence system. J Nutr 126, (1996), 1281S–1281S4S, doi:10.1093/jn/126.suppl4.1281S.
  • 13. M.E. Johll, D.G. Willimas, D.C. Johnson Activated pulsed amperometric detection of cysteine at platinum electrodes in acidic media Electroanalysis, 9 (1997), p. 1397 doi: 10.1002/elan.1140091805
  • 14. A. Besada, N.B. Tadros, Y.A. Gawargious. Copper(II)-neocuproine as color reagent for some biologically active thiols: spectrophotometric determination of cysteine, penicillamine, glutathione, and 6-mercaptopurine Microchim. Acta, 99, (1989), 143-146, doi: 10.1007/BF01242800.
  • 15. E. Tütem, R. Apak. Simultaneous spectrophotometric determination of cysteine in amino acid mixture using copper(II)-neocupoine reagent Anal. Chim. Acta, 255 (1991), 121-125.
  • 16. J. Chrastil. Spectrophotometric determination of cysteine and cystine in urine Analyst, 115 (1990), 1383-1384, doi: 10.1039/an9901501383.
  • 17. T. Pérez-Ruiz, C. Martinez- -Lozano, V. Tomás, J. Carpena Spectrofluorimetric flow injection method for the individual and successive determination of l-cysteine and l-cystine in pharmaceutical and urine samples. Analyst, 117, (1992), 1025-1028. doi: 10.1039/AN9921701025
  • 18. J. Russel, J.A. Mckeown, C. Hensman, W.E. Smith, J. Reglinski HPLC determination of biologically active thiols using pre-column derivatization with 5, 5′-dithio-bis-2-nitro-benzoic acid J. Pharm. Biomed. Anal., 15 (1999), 1757-1763. doi: 10.1016/s0731-7085(96)02019-5
  • 19. W. Jin, Y. Wang. Determination of cysteine by capillary zone electrophoresis with end-column amperometric detection at a gold/mercury amalagm microelectrode without deoxygenation J. Chromatogr. A., 769 (1997), 307-314. doi: 10.1016/S0021-9673(97)00015-0.
  • 20. Q. Zhao, S. J. Liu and W. Huang , Promising Optoelectronic Materials: Polymers Containing Phosphorescent Iridium(III) Complexes Macromol. Rapid Commun., 31, (2010), 794. doi: 10.1002/marc.200900888
  • 21. Z. Q. Chen, Z. Q. Bian, C. H. Huang, Functional IrIII Complexes and Their Applications, Adv. Mater., 22 (2010), 1534, doi: 10.1002/adma.200903233
  • 22. W. Y. Wong, C. L. Ho, Heavy metal organometallic electrophosphors derived from multi-component chromophores Coord. Chem. Rev., 253, (2009), 1709-1758. doi: 10.1016/j.ccr.2009.01.013
  • 23. Y. You, S. Y. Park, Phosphorescent iridium(iii) complexes: toward high phosphorescence quantum efficiency through ligand control Dalton Trans., 2009, 1267-1282. doi: 10.1039/B812281D
  • 24. M.. Yu, X.; Q. Zhao,, L. Shi,, F. Li, Z. Zhou, H. Yang, T. Yi, C. Huang.. Cationic iridium (III) complexes for phosphorescence staining in the cytoplasm of living cells Chem. Commun. 2008, 2115-2117. doi: 10.1039/B800939B.
  • 25. Q. Zhao, M. Yu, L. Shi, S. Liu, C. Li, M. Shi, Z. Zhou, C. Huang, F. Li,. Cationic Iridium (III) Complexes with Tunable Emission Color as Phosphorescent Dyes for Live Cell Imaging. Organometallics. 29, (2010), 1085-1091. doi: 10.1021/om900691r.
  • 26. K. Y. Zhang, S. P. Y. Li, N. Zhu; I. W. S Or, M. S. H Cheung, Y. W. Lam, K. K. W. Lo, Structure, Photophysical and Electrochemical Properties, Biomolecular Interactions, and Intracellular Uptake of Luminescent Cyclometalated Iridium(III) Dipyridoquinoxaline Complexes Inorg. Chem. 49 (2010), 2530-2540. doi: 10.1021/ic902465b
  • 27. M. Zhang, M. Yu, F. Li, M. Zhu, M. Li, Y. Gao, L. Li, Z. Liu, J. Zhang, D. Zhang, T. Yi, C. Huang. A Highly Selective Fluorescence Turn-on Sensor for Cysteine/Homocysteine and Its Application in Bioimaging. J. Am. Chem. Soc., 129 (2007), 10322-10323. doi: 10.1021/ja073140i
Yıl 2021, Sayı: 4, 355 - 365, 25.05.2021
https://doi.org/10.15671/hjbc.798021

Öz

Kaynakça

  • 1. Y. Sun, M. X. Yu, S. Liang, Y. J. Zhang, C. G. Li, T. T. Mou, W. J. Yang, X. Z. Zhang, B. Li and F. Y. Li, Fluorine-18 labeled rare-earth nanoparticles for positron emission tomography (PET) imaging of sentinel lymoh node, Biomaterials, 32 (2011) 2999-3007. doi: 10.1016/j.biomaterials.2011.01.011.
  • 2. T. Y. Cao, Y. Yang, Y. Gao, J. Zhou, Z. Li, F. Y. Li, High-quality water soluble and surface-functionalized upconversion nanocrystals as luminescent probes for bioimaging, Biomaterials, 32 (2011) 2959-2968. doi: 10.1016/j.biomaterials.2010.12.050.
  • 3. M. Jr. Bruchez, M. Moronne, P. Gin, S. Weiss, A. P. Alivisatos,Semiconductor nanocrystals as fluorescent biological labels, Science, 281 (1998) 2013-2016. doi: 10.1126/science.281.5385.2013.
  • 4. W. C. W. Chan, S. Nie,Quantum dot Bioconjugates for Ultrasensitive Nonisotopic Detection, Science, 281,(1998), 2016-2018. doi: 10.1126/science.281.5385.2016
  • 5. B. Dubertret, P. Skourides, D. J. Norris, V. Noireaux, A. H. Brivanlou ,A. Libchaber, In vivo imaging of quantum dots encapsulated in phospholipid micelles Science, 298, (2002), 1759-1762. doi: 10.1126/science.1077194.
  • 6. I. L. Medintz, H. T. Uyeda, E. R. Goldman, H. Mattoussi, Quantum dot bioconjugates for imaging, labelling and sensing, Nat. Mater., (4), 2005, 435-446. doi: 10.1038/nmat1390.
  • 7. J. Escobedo, O. Rusin, S. Lim, R.M.Strongin. NIR Dyes for Bioimaging Applications. Current opinion in chemical biology 14(1), (2009), 64-70. doi: 10.1016/j.cbpa.2009.10.022
  • 8. C. H. Huang, F. Y. Li, W. Huang, Intruduction to Organic Light-Emitting Materials and Devices, Press of Fudan University, Shanghai, 2005.
  • 9. Y. Ma, S. Liu, Y Wu, C Yang, X Liu, Q.Zhao, H. Wu, J. Liang, F. Li, W. Huang. Water-soluble phosphorescent iridium(iii) complexes as multicolor probes for imaging of homocysteine and cysteine in living cells J. Mater. Chem., (21) 2011, 18974-18982. doi: 10.1039/C1JM13513A.
  • 10. W.S. Speidl, M. Nikfardjam, A. Niessner Mild hyperhomocysteinemia is associated with a decreased fibrinolytic activity in patients after ST-elevation myocardial infarction. Thromb Res 119(3), (2007), 331–336.
  • 11. S. Kostić, Ž Mićovic, L Andrejević,.The effects of L-cysteine and N-acetyl-L-cysteine on homocysteine metabolism and haemostatic markers, and on cardiac and aortic histology in subchronically methionine-treated Wistar male rats. Mol Cell Biochem 451 (2019),43-54. doi: 10.1007/s11010-018-3391-z
  • 12. P.M. Ueland, M.A. Mansoor, A.B. Guttormsen. Reduced, oxidized and protein-bound forms of homocysteine and other aminothiols in plasma comprise the redox thiols status—a possible element of the extracellular antioxidant defence system. J Nutr 126, (1996), 1281S–1281S4S, doi:10.1093/jn/126.suppl4.1281S.
  • 13. M.E. Johll, D.G. Willimas, D.C. Johnson Activated pulsed amperometric detection of cysteine at platinum electrodes in acidic media Electroanalysis, 9 (1997), p. 1397 doi: 10.1002/elan.1140091805
  • 14. A. Besada, N.B. Tadros, Y.A. Gawargious. Copper(II)-neocuproine as color reagent for some biologically active thiols: spectrophotometric determination of cysteine, penicillamine, glutathione, and 6-mercaptopurine Microchim. Acta, 99, (1989), 143-146, doi: 10.1007/BF01242800.
  • 15. E. Tütem, R. Apak. Simultaneous spectrophotometric determination of cysteine in amino acid mixture using copper(II)-neocupoine reagent Anal. Chim. Acta, 255 (1991), 121-125.
  • 16. J. Chrastil. Spectrophotometric determination of cysteine and cystine in urine Analyst, 115 (1990), 1383-1384, doi: 10.1039/an9901501383.
  • 17. T. Pérez-Ruiz, C. Martinez- -Lozano, V. Tomás, J. Carpena Spectrofluorimetric flow injection method for the individual and successive determination of l-cysteine and l-cystine in pharmaceutical and urine samples. Analyst, 117, (1992), 1025-1028. doi: 10.1039/AN9921701025
  • 18. J. Russel, J.A. Mckeown, C. Hensman, W.E. Smith, J. Reglinski HPLC determination of biologically active thiols using pre-column derivatization with 5, 5′-dithio-bis-2-nitro-benzoic acid J. Pharm. Biomed. Anal., 15 (1999), 1757-1763. doi: 10.1016/s0731-7085(96)02019-5
  • 19. W. Jin, Y. Wang. Determination of cysteine by capillary zone electrophoresis with end-column amperometric detection at a gold/mercury amalagm microelectrode without deoxygenation J. Chromatogr. A., 769 (1997), 307-314. doi: 10.1016/S0021-9673(97)00015-0.
  • 20. Q. Zhao, S. J. Liu and W. Huang , Promising Optoelectronic Materials: Polymers Containing Phosphorescent Iridium(III) Complexes Macromol. Rapid Commun., 31, (2010), 794. doi: 10.1002/marc.200900888
  • 21. Z. Q. Chen, Z. Q. Bian, C. H. Huang, Functional IrIII Complexes and Their Applications, Adv. Mater., 22 (2010), 1534, doi: 10.1002/adma.200903233
  • 22. W. Y. Wong, C. L. Ho, Heavy metal organometallic electrophosphors derived from multi-component chromophores Coord. Chem. Rev., 253, (2009), 1709-1758. doi: 10.1016/j.ccr.2009.01.013
  • 23. Y. You, S. Y. Park, Phosphorescent iridium(iii) complexes: toward high phosphorescence quantum efficiency through ligand control Dalton Trans., 2009, 1267-1282. doi: 10.1039/B812281D
  • 24. M.. Yu, X.; Q. Zhao,, L. Shi,, F. Li, Z. Zhou, H. Yang, T. Yi, C. Huang.. Cationic iridium (III) complexes for phosphorescence staining in the cytoplasm of living cells Chem. Commun. 2008, 2115-2117. doi: 10.1039/B800939B.
  • 25. Q. Zhao, M. Yu, L. Shi, S. Liu, C. Li, M. Shi, Z. Zhou, C. Huang, F. Li,. Cationic Iridium (III) Complexes with Tunable Emission Color as Phosphorescent Dyes for Live Cell Imaging. Organometallics. 29, (2010), 1085-1091. doi: 10.1021/om900691r.
  • 26. K. Y. Zhang, S. P. Y. Li, N. Zhu; I. W. S Or, M. S. H Cheung, Y. W. Lam, K. K. W. Lo, Structure, Photophysical and Electrochemical Properties, Biomolecular Interactions, and Intracellular Uptake of Luminescent Cyclometalated Iridium(III) Dipyridoquinoxaline Complexes Inorg. Chem. 49 (2010), 2530-2540. doi: 10.1021/ic902465b
  • 27. M. Zhang, M. Yu, F. Li, M. Zhu, M. Li, Y. Gao, L. Li, Z. Liu, J. Zhang, D. Zhang, T. Yi, C. Huang. A Highly Selective Fluorescence Turn-on Sensor for Cysteine/Homocysteine and Its Application in Bioimaging. J. Am. Chem. Soc., 129 (2007), 10322-10323. doi: 10.1021/ja073140i
Toplam 27 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Research Article
Yazarlar

Özlem Biçen Ünlüer 0000-0002-5524-4593

Yayımlanma Tarihi 25 Mayıs 2021
Kabul Tarihi 16 Şubat 2021
Yayımlandığı Sayı Yıl 2021 Sayı: 4

Kaynak Göster

APA Biçen Ünlüer, Ö. (2021). Development of Iridium Based Fluorimetric Method for Determination of Cystein. Hacettepe Journal of Biology and Chemistry, 49(4), 355-365. https://doi.org/10.15671/hjbc.798021
AMA Biçen Ünlüer Ö. Development of Iridium Based Fluorimetric Method for Determination of Cystein. HJBC. Mayıs 2021;49(4):355-365. doi:10.15671/hjbc.798021
Chicago Biçen Ünlüer, Özlem. “Development of Iridium Based Fluorimetric Method for Determination of Cystein”. Hacettepe Journal of Biology and Chemistry 49, sy. 4 (Mayıs 2021): 355-65. https://doi.org/10.15671/hjbc.798021.
EndNote Biçen Ünlüer Ö (01 Mayıs 2021) Development of Iridium Based Fluorimetric Method for Determination of Cystein. Hacettepe Journal of Biology and Chemistry 49 4 355–365.
IEEE Ö. Biçen Ünlüer, “Development of Iridium Based Fluorimetric Method for Determination of Cystein”, HJBC, c. 49, sy. 4, ss. 355–365, 2021, doi: 10.15671/hjbc.798021.
ISNAD Biçen Ünlüer, Özlem. “Development of Iridium Based Fluorimetric Method for Determination of Cystein”. Hacettepe Journal of Biology and Chemistry 49/4 (Mayıs 2021), 355-365. https://doi.org/10.15671/hjbc.798021.
JAMA Biçen Ünlüer Ö. Development of Iridium Based Fluorimetric Method for Determination of Cystein. HJBC. 2021;49:355–365.
MLA Biçen Ünlüer, Özlem. “Development of Iridium Based Fluorimetric Method for Determination of Cystein”. Hacettepe Journal of Biology and Chemistry, c. 49, sy. 4, 2021, ss. 355-6, doi:10.15671/hjbc.798021.
Vancouver Biçen Ünlüer Ö. Development of Iridium Based Fluorimetric Method for Determination of Cystein. HJBC. 2021;49(4):355-6.

HACETTEPE JOURNAL OF BIOLOGY AND CHEMİSTRY

Copyright © Hacettepe University Faculty of Science

http://www.hjbc.hacettepe.edu.tr/

https://dergipark.org.tr/tr/pub/hjbc