Araştırma Makalesi
BibTex RIS Kaynak Göster

Reaktif turuncu 16 boyasının, katalizör olarak manyetik nano boyutlu kil kullanılarak heterojen Fenton prosesi ile parçalanması: Bir Merkezi kompozit optimizasyon çalışması

Yıl 2022, Cilt: 50 Sayı: 2, 113 - 129, 28.02.2022
https://doi.org/10.15671/hjbc.937728

Öz

Bu çalışmada Fe3O4/montmorillonit, sulu çözeltilerden Reaktif turuncu 16 (RO16) 'nın Kimyasal Oksijen İhtiyacı(KOİ)’na dayalı uzaklaştırılması için heterojen bir fenton katalizörü olarak sentezlenmiştir. H2O2 konsantrasyonu, katalizör dozu, pH ve reaksiyon süresi gibi sistem parametreleri, Merkezi Kompozit Tasarım(MKT) temelinde sayısal olarak optimize edildi. Katalizör, X-ışını kırınımı(XRD), Fourier dönüşümlü kızılötesi spektroskopisi(FTIR), taramalı elektron mikroskobu(SEM), enerji Dağılımlı X-ışını Spektroskopisi(EDX), Transmisyon elektron mikroskobu(TEM), dinamik ışık saçılımı(DLS), ζ potansiyeli ve Brunauer-Emmett-Teller(BET) ile karakterize edildi. Adsorpsiyon prosesi, RO16'nın uzaklaştırılmasında katkıda bulundu, ancak heterojen Fenton prosesi büyük bir paya sahipti ve adsorpsiyon prosesinden daha hızlı gerçekleşti. Optimum koşullar katalizör dozajı: 1.83 (g/L), H2O2 konsantrasyonu: 77.98 (mM), pH: 3 ve reaksiyon süresi: 60 dakika olarak belirlendi. Bu koşullar altında KOİ giderim verimi modelden% 84.82 olarak tahmin edidi ve deneysel olarak % 85.90 bulundu. RO16'nın sulu ortamlardan başarılı bir şekilde uzaklaştırılması, Fe3O4/MMT kullanılarak heterojen Fenton prosesi ile mümkündür.

Kaynakça

  • D. Ozturk, T. Sahan, T. Bayram, A. Erkus, Application of Response Surface Methodology (Rsm) To Optimize the Adsorption Conditions of Cationic Basic Yellow 2 Onto Pumice Samples As a New Adsorbent, Fresenius Environ. Bull. 26 (2017) 3285–3292.
  • T.A. Egerton, H. Purnama, Does hydrogen peroxide really accelerate TiO2 UV-C photocatalyzed decolouration of azo-dyes such as Reactive Orange 16?, Dye. Pigment. (2014). https://doi.org/10.1016/j.dyepig.2013.10.019.
  • P. Ilgın, Adsoption of Cationic Dye on Anionic Hydrogel and Its Second Use for Drug Delivery with Antibacterial Properties, Hacettepe J. Biol. Chem. 4 (2018) 577–591. https://doi.org/10.15671/HJBC.2018.264.
  • D. Ozturk, A.E. Yilmaz, Investigation of electrochemical degradation of Basic Red 13 dye in aqueous solutions based on COD removal: numerical optimization approach, Int. J. Environ. Sci. Technol. 17 (2020) 3099–3110. https://doi.org/10.1007/s13762-020-02692-2.
  • A. Akhtar, Z. Aslam, A. Asghar, M.M. Bello, A.A.A. Raman, Electrocoagulation of Congo Red dye-containing wastewater: Optimization of operational parameters and process mechanism, J. Environ. Chem. Eng. 8 (2020) 104055. https://doi.org/10.1016/j.jece.2020.104055.
  • F.M. Gunawan, D. Mangindaan, K. Khoiruddin, I.G. Wenten, Nanofiltration membrane cross-linked by m -phenylenediamine for dye removal from textile wastewater, Polym. Adv. Technol. 30 (2019) 360–367. https://doi.org/10.1002/pat.4473.
  • H. Qian, Q. Hou, G. Yu, Y. Nie, C. Bai, X. Bai, M. Ju, Enhanced removal of dye from wastewater by Fenton process activated by core-shell NiCo2O4@FePc catalyst, J. Clean. Prod. 273 (2020) 123028. https://doi.org/10.1016/j.jclepro.2020.123028.
  • Y.S. Woo, M. Rafatullah, A.F.M. Al-Karkhi, T.T. Tow, Removal of Terasil Red R dye by using Fenton oxidation: a statistical analysis, Desalin. Water Treat. 52 (2014) 4583–4591. https://doi.org/10.1080/19443994.2013.804454.
  • D. Ozturk, A.E. Yilmaz, Treatment of slaughterhouse wastewater with the electrochemical oxidation process: Role of operating parameters on treatment efficiency and energy consumption, J. Water Process Eng. 31 (2019). https://doi.org/10.1016/j.jwpe.2019.100834.
  • P. Hou, C. Shi, L. Wu, X. Hou, Chitosan/hydroxyapatite/Fe3O4 magnetic composite for metal-complex dye AY220 removal: Recyclable metal-promoted Fenton-like degradation, Microchem. J. 128 (2016) 218–225. https://doi.org/10.1016/j.microc.2016.04.022.
  • N.C. Fernandes, L.B. Brito, G.G. Costa, S.F. Taveira, M.S.S. Cunha-Filho, G.A.R. Oliveira, R.N. Marreto, Removal of azo dye using Fenton and Fenton-like processes: Evaluation of process factors by Box–Behnken design and ecotoxicity tests, Chem. Biol. Interact. (2018). https://doi.org/10.1016/j.cbi.2018.06.003.
  • G. Ozgenc, M. Atakay, B. Salih, B. Zumreoglu-Karan, G. Elmaci, Degradation of Crystal Violet Dye from Waters by Layered MnO2 and Nanocomposite-MnO2@MnFe2O4 Catalysts, Hacettepe J. Biol. Chem. (2017). https://doi.org/10.15671/hjbc.2018.199.
  • B. Bianco, I. De Michelis, F. Vegliò, Fenton treatment of complex industrial wastewater: Optimization of process conditions by surface response method, J. Hazard. Mater. 186 (2011) 1733–1738. https://doi.org/10.1016/j.jhazmat.2010.12.054.
  • J. Ma, W. Song, C. Chen, W. Ma, J. Zhao, Y. Tang, Fenton degradation of organic compounds promoted by dyes under visible irradiation, Environ. Sci. Technol. (2005). https://doi.org/10.1021/es050001x.
  • H. Sun, G. Xie, D. He, L. Zhang, Ascorbic acid promoted magnetite Fenton degradation of alachlor: Mechanistic insights and kinetic modeling, Appl. Catal. B Environ. 267 (2020) 118383. https://doi.org/10.1016/j.apcatb.2019.118383.
  • R. Zhu, Y. Zhu, H. Xian, L. Yan, H. Fu, G. Zhu, Y. Xi, J. Zhu, H. He, CNTs/ferrihydrite as a highly efficient heterogeneous Fenton catalyst for the degradation of bisphenol A: The important role of CNTs in accelerating Fe(III)/Fe(II) cycling, Appl. Catal. B Environ. 270 (2020) 118891. https://doi.org/10.1016/j.apcatb.2020.118891.
  • A.R.D. Ahmad, S.S. Imam, W. Da Oh, R. Adnan, Fenton Degradation of Ofloxacin Using a Montmorillonite–Fe3O4 Composite, Catalysts. 11 (2021) 177. https://doi.org/10.3390/catal11020177.
  • S. Xin, G. Liu, X. Ma, J. Gong, B. Ma, Q. Yan, Q. Chen, D. Ma, G. Zhang, M. Gao, Y. Xin, High efficiency heterogeneous Fenton-like catalyst biochar modified CuFeO2 for the degradation of tetracycline: Economical synthesis, catalytic performance and mechanism, Appl. Catal. B Environ. 280 (2021) 119386. https://doi.org/10.1016/j.apcatb.2020.119386.
  • T. Bayram, S. Bucak, D. Ozturk, BR13 dye removal using sodium dodecyl sulfate modified montmorillonite: Equilibrium, thermodynamic, kinetic and reusability studies, Chem. Eng. Process. - Process Intensif. 158 (2020) 108186. https://doi.org/10.1016/j.cep.2020.108186.
  • A. Kausar, M. Iqbal, A. Javed, K. Aftab, Z. i. H. Nazli, H.N. Bhatti, S. Nouren, Dyes adsorption using clay and modified clay: A review, J. Mol. Liq. (2018). https://doi.org/10.1016/j.molliq.2018.02.034.
  • R.M. Zakaria, I. Hassan, M.Z. El-Abd, Y.A. El-Tawil, Lactic acid removal from wastewater by using different types of activated clay, in: Thirteen. Int. Water Technol. Conf. (IWTC), Hurghada, Citeseer, 2009: pp. 403–416.
  • M. Zhang, G. Pan, D. Zhao, G. He, XAFS study of starch-stabilized magnetite nanoparticles and surface speciation of arsenate, Environ. Pollut. (2011). https://doi.org/10.1016/j.envpol.2011.08.017.
  • K. Kalantari, M.B. Ahmad, K. Shameli, M.Z. Bin Hussein, R. Khandanlou, H. Khanehzaei, Size-Controlled Synthesis of Fe 3 O 4 Magnetic Nanoparticles in the Layers of Montmorillonite, J. Nanomater. 2014 (2014) 1–9. https://doi.org/10.1155/2014/739485.
  • L. Ma, S.I. Rathnayake, H. He, R. Zhu, J. Zhu, G.A. Ayoko, J. Li, Y. Xi, In situ sequentially generation of acid and ferrous ions for environmental remediation, Chem. Eng. J. (2016). https://doi.org/10.1016/j.cej.2016.05.065.
  • A.D. Eaton, L.S. Clesceri, E.. Rice, A.E. Greenbaerg, M.A.H. Franson, Standard Methods for Examination of Water and Wastewater: Centennial Edition, 2005.
  • J. Chang, J. Ma, Q. Ma, D. Zhang, N. Qiao, M. Hu, H. Ma, Adsorption of methylene blue onto Fe3O4/activated montmorillonite nanocomposite, Appl. Clay Sci. 119 (2016) 132–140. https://doi.org/10.1016/j.clay.2015.06.038.
  • S.M. Lee, D. Tiwari, Organo and inorgano-organo-modified clays in the remediation of aqueous solutions: An overview, Appl. Clay Sci. 59–60 (2012) 84–102. https://doi.org/10.1016/j.clay.2012.02.006.
  • T. Bayram, S. Bucak, D. Ozturk, BR13 dye removal using sodium dodecyl sulfate modified montmorillonite: Equilibrium, thermodynamic, kinetic and reusability studies, Chem. Eng. Process. - Process Intensif. 158 (2020). https://doi.org/10.1016/j.cep.2020.108186.
  • K.G. Bhattacharyya, S. Sen Gupta, Adsorption of Fe(III), Co(II) and Ni(II) on ZrO–kaolinite and ZrO–montmorillonite surfaces in aqueous medium, Colloids Surfaces A Physicochem. Eng. Asp. 317 (2008) 71–79. https://doi.org/10.1016/j.colsurfa.2007.09.037.
  • Y. Kim, Y.K. Kim, J.H. Kim, M.S. Yim, D. Harbottle, J.W. Lee, Synthesis of functionalized porous montmorillonite via solid-state NaOH treatment for efficient removal of cesium and strontium ions, Appl. Surf. Sci. (2018). https://doi.org/10.1016/j.apsusc.2018.04.181.
  • P. Lu, J.L. Zhang, Y.L. Liu, D.H. Sun, G.X. Liu, G.Y. Hong, J.Z. Ni, Synthesis and characteristic of the Fe3O4@SiO 2@Eu(DBM)3·2H2O/SiO2 luminomagnetic microspheres with core-shell structure, Talanta. (2010). https://doi.org/10.1016/j.talanta.2010.04.052.
  • J.A. Lopez, F. González, F.A. Bonilla, G. Zambrano, M.E. Gómez, Synthesis and characterization of Fe3O4 magnetic nanofluid, Rev. Latinoam. Metal. y Mater. (2010).
  • G.R. Mahdavinia, S. Hasanpour, L. Behrouzi, H. Sheykhloie, Study on adsorption of Cu(II) on magnetic starch- g -polyamidoxime/montmorillonite/Fe 3 O 4 nanocomposites as novel chelating ligands, Starch - Stärke. 68 (2016) 188–199. https://doi.org/10.1002/star.201400255.
  • J. Wang, G. Liu, Y. Liu, C. Zhou, Y. Wu, Photocatalytic Degradation of Methyl Orange by Fe 2 O 3 −Fe 3 O 4 Nanoparticles and Fe 2 O 3 −Fe 3 O 4 −Montmorillonite Nanocomposites, CLEAN - Soil, Air, Water. 45 (2017) 1600472. https://doi.org/10.1002/clen.201600472.
  • S. Jebril, R. Khanfir Ben Jenana, C. Dridi, Green synthesis of silver nanoparticles using Melia azedarach leaf extract and their antifungal activities: In vitro and in vivo, Mater. Chem. Phys. 248 (2020) 122898. https://doi.org/10.1016/j.matchemphys.2020.122898.
  • M. Jayapriya, D. Dhanasekaran, M. Arulmozhi, E. Nandhakumar, N. Senthilkumar, K. Sureshkumar, Green synthesis of silver nanoparticles using Piper longum catkin extract irradiated by sunlight: antibacterial and catalytic activity, Res. Chem. Intermed. 45 (2019) 3617–3631. https://doi.org/10.1007/s11164-019-03812-5.
  • Y. Akinay, F. Hayat, B. Çolak, Absorbing properties and structural design of PVB/Fe 3 O 4 nanocomposite, Mater. Chem. Phys. 229 (2019) 460–466. https://doi.org/10.1016/j.matchemphys.2019.03.039.
  • H. Niu, P. Liu, F. Qin, X.L. Liu, Y. Akinay, PEDOT coated Cu-BTC metal-organic frameworks decorated with Fe3O4 nanoparticles and their enhanced electromagnetic wave absorption, Mater. Chem. Phys. 253 (2020) 123458. https://doi.org/10.1016/j.matchemphys.2020.123458.
  • M. Danaei, M. Dehghankhold, S. Ataei, F. Hasanzadeh Davarani, R. Javanmard, A. Dokhani, S. Khorasani, M. Mozafari, Impact of Particle Size and Polydispersity Index on the Clinical Applications of Lipidic Nanocarrier Systems, Pharmaceutics. 10 (2018) 57. https://doi.org/10.3390/pharmaceutics10020057.
  • N.R. Abdelsalam, M.M.G. Fouda, A. Abdel-Megeed, J. Ajarem, A.A. Allam, M.E. El-Naggar, Assessment of silver nanoparticles decorated starch and commercial zinc nanoparticles with respect to their genotoxicity on onion, Int. J. Biol. Macromol. 133 (2019) 1008–1018. https://doi.org/10.1016/j.ijbiomac.2019.04.134.
  • A. Dowek, L.M.M. Lê, T. Rohmer, F.-X. Legrand, H. Remita, I. Lampre, A. Tfayli, M. Lavielle, E. Caudron, A mathematical approach to deal with nanoparticle polydispersity in surface enhanced Raman spectroscopy to quantify antineoplastic agents, Talanta. 217 (2020) 121040. https://doi.org/10.1016/j.talanta.2020.121040.
  • Q.U. Ain, U. Rasheed, M. Yaseen, H. Zhang, Z. Tong, Superior dye degradation and adsorption capability of polydopamine modified Fe3O4-pillared bentonite composite, J. Hazard. Mater. 397 (2020) 122758. https://doi.org/10.1016/j.jhazmat.2020.122758.
  • J. Hua, M. Huang, Heterogeneous Fenton-like degradation of EDTA in an aqueous solution with enhanced COD removal under neutral pH, Water Sci. Technol. 81 (2020) 2432–2440. https://doi.org/10.2166/wst.2020.300.
  • X. Li, K. Cui, Z. Guo, T. Yang, Y. Cao, Y. Xiang, H. Chen, M. Xi, Heterogeneous Fenton-like degradation of tetracyclines using porous magnetic chitosan microspheres as an efficient catalyst compared with two preparation methods, Chem. Eng. J. 379 (2020) 122324. https://doi.org/10.1016/j.cej.2019.122324.
  • B. Guo, T. Xu, L. Zhang, S. Li, A heterogeneous fenton-like system with green iron nanoparticles for the removal of bisphenol A:Performance, kinetics and transformation mechanism, J. Environ. Manage. 272 (2020) 111047. https://doi.org/10.1016/j.jenvman.2020.111047.
  • I. Mironyuk, T. Tatarchuk, H. Vasylyeva, V.M. Gun’ko, I. Mykytyn, Effects of chemosorbed arsenate groups on the mesoporous titania morphology and enhanced adsorption properties towards Sr(II) cations, J. Mol. Liq. (2019). https://doi.org/10.1016/j.molliq.2019.03.026.
  • V. Chittal, M. Gracias, A. Anu, P. Saha, K. V. Bhaskara Rao, Biodecolorization and biodegradation of azo dye reactive orange-16 by marine nocardiopsis sp., Iran. J. Biotechnol. 17 (2019) 18–26. https://doi.org/10.29252/ijb.1551.
  • A.A. Telke, D.C. Kalyani, V. V. Dawkar, S.P. Govindwar, Influence of organic and inorganic compounds on oxidoreductive decolorization of sulfonated azo dye C.I. Reactive Orange 16, J. Hazard. Mater. 172 (2009) 298–309. https://doi.org/10.1016/j.jhazmat.2009.07.008.
  • M.G. Larson, Analysis of Variance, Circulation. 117 (2008) 115–121. https://doi.org/10.1161/CIRCULATIONAHA.107.654335.
  • H.Y. Xu, S.Y. Qi, Y. Li, Y. Zhao, J.W. Li, Heterogeneous Fenton-like discoloration of Rhodamine B using natural schorl as catalyst: Optimization by response surface methodology, Environ. Sci. Pollut. Res. 20 (2013) 5764–5772. https://doi.org/10.1007/s11356-013-1578-0.
  • S. Hussain, E. Aneggi, D. Goi, Catalytic activity of metals in heterogeneous Fenton-like oxidation of wastewater contaminants: a review, Environ. Chem. Lett. 1 (2021) 3. https://doi.org/10.1007/s10311-021-01185-z.
  • I.D. Boateng, X.M. Yang, Process optimization of intermediate-wave infrared drying: Screening by Plackett–Burman; comparison of Box-Behnken and central composite design and evaluation: A case study, Ind. Crops Prod. 162 (2021) 113287. https://doi.org/10.1016/j.indcrop.2021.113287.
  • T. Şahan, D. Öztürk, Investigation of Pb(II) adsorption onto pumice samples: Application of optimization method based on fractional factorial design and response surface methodology, Clean Technol. Environ. Policy. 16 (2014) 819–831. https://doi.org/10.1007/s10098-013-0673-8.
  • S.S. Kashyap, P.R. Gogate, S.M. Joshi, Ultrasound assisted synthesis of biodiesel from karanja oil by interesterification: Intensification studies and optimization using RSM, Ultrason. Sonochem. 50 (2019) 36–45. https://doi.org/10.1016/j.ultsonch.2018.08.019.
  • C.C. Nwobi-Okoye, M.K. Anyichie, C.U. Atuanya, RSM and ANN Modeling for Production of Newbouldia Laevies Fibre and Recycled High Density Polyethylene Composite: Multi Objective Optimization Using Genetic Algorithm, Fibers Polym. 21 (2020) 898–909. https://doi.org/10.1007/s12221-020-9597-1.
  • S. Chamoli, ANN and RSM approach for modeling and optimization of designing parameters for a v down perforated baffle roughened rectangular channel, Alexandria Eng. J. 54 (2015) 429–446. https://doi.org/10.1016/j.aej.2015.03.018.
  • M.O. Akinwande, H.G. Dikko, A. Samson, Variance Inflation Factor: As a Condition for the Inclusion of Suppressor Variable(s) in Regression Analysis, Open J. Stat. 05 (2015) 754–767. https://doi.org/10.4236/ojs.2015.57075.
  • D. Ozturk, E. Dagdas, B.A. Fil, M.J.K. Bashir, Central composite modeling for electrochemical degradation of paint manufacturing plant wastewater: One-step/two-response optimization, Environ. Technol. Innov. 21 (2020) 101264. https://doi.org/10.1016/j.eti.2020.101264.
  • M.Z. Hassan, S.M. Sapuan, S.A. Roslan, S.A. Aziz, S. Sarip, Optimization of tensile behavior of banana pseudo-stem (Musa acuminate) fiber reinforced epoxy composites using response surface methodology, J. Mater. Res. Technol. (2019). https://doi.org/10.1016/j.jmrt.2019.06.026.
  • M.A. Barakat, R. Kumar, E.C. Lima, M.K. Seliem, Facile synthesis of muscovite–supported Fe3O4 nanoparticles as an adsorbent and heterogeneous catalyst for effective removal of methyl orange: Characterisation, modelling, and mechanism, J. Taiwan Inst. Chem. Eng. 119 (2021) 146–157. https://doi.org/10.1016/j.jtice.2021.01.025.
  • A. Mashayekh-Salehi, K. Akbarmojeni, A. Roudbari, J. Peter van der Hoek, R. Nabizadeh, M.H. Dehghani, K. Yaghmaeian, Use of mine waste for H2O2-assisted heterogeneous Fenton-like degradation of tetracycline by natural pyrite nanoparticles: Catalyst characterization, degradation mechanism, operational parameters and cytotoxicity assessment, J. Clean. Prod. 291 (2021) 125235. https://doi.org/10.1016/j.jclepro.2020.125235.
  • G. Imoberdorf, M. Mohseni, Degradation of natural organic matter in surface water using vacuum-UV irradiation, J. Hazard. Mater. 186 (2011) 240–246. https://doi.org/10.1016/j.jhazmat.2010.10.118.
  • J. Sharma, I.M. Mishra, V. Kumar, Degradation and mineralization of Bisphenol A (BPA) in aqueous solution using advanced oxidation processes: UV/H2O2 and UV/S2O82− oxidation systems, J. Environ. Manage. 156 (2015) 266–275. https://doi.org/10.1016/j.jenvman.2015.03.048.
  • N. Sétifi, N. Debbache, T. Sehili, O. Halimi, Heterogeneous Fenton-like oxidation of naproxen using synthesized goethite-montmorillonite nanocomposite, J. Photochem. Photobiol. A Chem. 370 (2019) 67–74. https://doi.org/10.1016/j.jphotochem.2018.10.033.
  • A. Tolba, M. Gar Alalm, M. Elsamadony, A. Mostafa, H. Afify, D.D. Dionysiou, Modeling and optimization of heterogeneous Fenton-like and photo-Fenton processes using reusable Fe3O4-MWCNTs, Process Saf. Environ. Prot. 128 (2019) 273–283. https://doi.org/10.1016/j.psep.2019.06.011.
  • M. Arshadi, M.K. Abdolmaleki, F. Mousavinia, A. Khalafi-Nezhad, H. Firouzabadi, A. Gil, Degradation of methyl orange by heterogeneous Fenton-like oxidation on a nano-organometallic compound in the presence of multi-walled carbon nanotubes, Chem. Eng. Res. Des. 112 (2016) 113–121.
  • H.L. So, K.Y. Lin, W. Chu, Triclosan removal by heterogeneous Fenton-like process: Studying the kinetics and surface chemistry of Fe3O4 as catalyst, J. Environ. Chem. Eng. 7 (2019) 103432. https://doi.org/10.1016/j.jece.2019.103432.
  • C. Ma, Z. He, S. Jia, X. Zhang, S. Hou, Treatment of stabilized landfill leachate by Fenton-like process using Fe3O4 particles decorated Zr-pillared bentonite, Ecotoxicol. Environ. Saf. 161 (2018) 489–496.
  • C. Shao-Hua(陈绍华, D.-Y. Du, Degradation of n-butyl xanthate using fly ash as heterogeneous Fenton-like catalyst, J. Cent. South Univ. 21 (2014) 1448–1452. https://doi.org/10.1007/s11771-014-2084-3.
  • I. Hirsch, E. Prell, M. Weiwad, Assessment of cell death studies by monitoring hydrogen peroxide in cell culture, Anal. Biochem. 456 (2014) 22–24.

Degradation of Reactive Orange 16 dye with heterogeneous Fenton Process using magnetic nano-sized clay as catalyst: A central composite optimization study

Yıl 2022, Cilt: 50 Sayı: 2, 113 - 129, 28.02.2022
https://doi.org/10.15671/hjbc.937728

Öz

In this study, Fe3O4/montmorillonite was synthesized as a heterogeneous Fenton catalyst for the removal of Reactive Orange 16 (RO16) from aqueous solutions based on chemical oxygen demand (COD). System parameters such as H2O2 concentration, catalyst dose, pH, and reaction time were numerically optimized based on Central Composite Design (CCD). The catalyst was characterized with X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), dynamic light scattering (DLS), ζ potential, and Brunauer-Emmett-Teller (BET). The adsorption process contributed to the removal of RO16 but the heterogeneous Fenton process had a higher share and occurred faster than the adsorption process. Optimum conditions were determined as catalyst dosage:1.83 (g/L), H2O2 concentration:77.98 (mM), pH:3, and reaction time:60 min. Under these conditions, COD removal efficiency estimated from the model was 84.82% and found experimentally was 85.90%. Successful removal of RO16 from aqueous environments is possible with a heterogeneous Fenton process using Fe3O4/MMT.

Kaynakça

  • D. Ozturk, T. Sahan, T. Bayram, A. Erkus, Application of Response Surface Methodology (Rsm) To Optimize the Adsorption Conditions of Cationic Basic Yellow 2 Onto Pumice Samples As a New Adsorbent, Fresenius Environ. Bull. 26 (2017) 3285–3292.
  • T.A. Egerton, H. Purnama, Does hydrogen peroxide really accelerate TiO2 UV-C photocatalyzed decolouration of azo-dyes such as Reactive Orange 16?, Dye. Pigment. (2014). https://doi.org/10.1016/j.dyepig.2013.10.019.
  • P. Ilgın, Adsoption of Cationic Dye on Anionic Hydrogel and Its Second Use for Drug Delivery with Antibacterial Properties, Hacettepe J. Biol. Chem. 4 (2018) 577–591. https://doi.org/10.15671/HJBC.2018.264.
  • D. Ozturk, A.E. Yilmaz, Investigation of electrochemical degradation of Basic Red 13 dye in aqueous solutions based on COD removal: numerical optimization approach, Int. J. Environ. Sci. Technol. 17 (2020) 3099–3110. https://doi.org/10.1007/s13762-020-02692-2.
  • A. Akhtar, Z. Aslam, A. Asghar, M.M. Bello, A.A.A. Raman, Electrocoagulation of Congo Red dye-containing wastewater: Optimization of operational parameters and process mechanism, J. Environ. Chem. Eng. 8 (2020) 104055. https://doi.org/10.1016/j.jece.2020.104055.
  • F.M. Gunawan, D. Mangindaan, K. Khoiruddin, I.G. Wenten, Nanofiltration membrane cross-linked by m -phenylenediamine for dye removal from textile wastewater, Polym. Adv. Technol. 30 (2019) 360–367. https://doi.org/10.1002/pat.4473.
  • H. Qian, Q. Hou, G. Yu, Y. Nie, C. Bai, X. Bai, M. Ju, Enhanced removal of dye from wastewater by Fenton process activated by core-shell NiCo2O4@FePc catalyst, J. Clean. Prod. 273 (2020) 123028. https://doi.org/10.1016/j.jclepro.2020.123028.
  • Y.S. Woo, M. Rafatullah, A.F.M. Al-Karkhi, T.T. Tow, Removal of Terasil Red R dye by using Fenton oxidation: a statistical analysis, Desalin. Water Treat. 52 (2014) 4583–4591. https://doi.org/10.1080/19443994.2013.804454.
  • D. Ozturk, A.E. Yilmaz, Treatment of slaughterhouse wastewater with the electrochemical oxidation process: Role of operating parameters on treatment efficiency and energy consumption, J. Water Process Eng. 31 (2019). https://doi.org/10.1016/j.jwpe.2019.100834.
  • P. Hou, C. Shi, L. Wu, X. Hou, Chitosan/hydroxyapatite/Fe3O4 magnetic composite for metal-complex dye AY220 removal: Recyclable metal-promoted Fenton-like degradation, Microchem. J. 128 (2016) 218–225. https://doi.org/10.1016/j.microc.2016.04.022.
  • N.C. Fernandes, L.B. Brito, G.G. Costa, S.F. Taveira, M.S.S. Cunha-Filho, G.A.R. Oliveira, R.N. Marreto, Removal of azo dye using Fenton and Fenton-like processes: Evaluation of process factors by Box–Behnken design and ecotoxicity tests, Chem. Biol. Interact. (2018). https://doi.org/10.1016/j.cbi.2018.06.003.
  • G. Ozgenc, M. Atakay, B. Salih, B. Zumreoglu-Karan, G. Elmaci, Degradation of Crystal Violet Dye from Waters by Layered MnO2 and Nanocomposite-MnO2@MnFe2O4 Catalysts, Hacettepe J. Biol. Chem. (2017). https://doi.org/10.15671/hjbc.2018.199.
  • B. Bianco, I. De Michelis, F. Vegliò, Fenton treatment of complex industrial wastewater: Optimization of process conditions by surface response method, J. Hazard. Mater. 186 (2011) 1733–1738. https://doi.org/10.1016/j.jhazmat.2010.12.054.
  • J. Ma, W. Song, C. Chen, W. Ma, J. Zhao, Y. Tang, Fenton degradation of organic compounds promoted by dyes under visible irradiation, Environ. Sci. Technol. (2005). https://doi.org/10.1021/es050001x.
  • H. Sun, G. Xie, D. He, L. Zhang, Ascorbic acid promoted magnetite Fenton degradation of alachlor: Mechanistic insights and kinetic modeling, Appl. Catal. B Environ. 267 (2020) 118383. https://doi.org/10.1016/j.apcatb.2019.118383.
  • R. Zhu, Y. Zhu, H. Xian, L. Yan, H. Fu, G. Zhu, Y. Xi, J. Zhu, H. He, CNTs/ferrihydrite as a highly efficient heterogeneous Fenton catalyst for the degradation of bisphenol A: The important role of CNTs in accelerating Fe(III)/Fe(II) cycling, Appl. Catal. B Environ. 270 (2020) 118891. https://doi.org/10.1016/j.apcatb.2020.118891.
  • A.R.D. Ahmad, S.S. Imam, W. Da Oh, R. Adnan, Fenton Degradation of Ofloxacin Using a Montmorillonite–Fe3O4 Composite, Catalysts. 11 (2021) 177. https://doi.org/10.3390/catal11020177.
  • S. Xin, G. Liu, X. Ma, J. Gong, B. Ma, Q. Yan, Q. Chen, D. Ma, G. Zhang, M. Gao, Y. Xin, High efficiency heterogeneous Fenton-like catalyst biochar modified CuFeO2 for the degradation of tetracycline: Economical synthesis, catalytic performance and mechanism, Appl. Catal. B Environ. 280 (2021) 119386. https://doi.org/10.1016/j.apcatb.2020.119386.
  • T. Bayram, S. Bucak, D. Ozturk, BR13 dye removal using sodium dodecyl sulfate modified montmorillonite: Equilibrium, thermodynamic, kinetic and reusability studies, Chem. Eng. Process. - Process Intensif. 158 (2020) 108186. https://doi.org/10.1016/j.cep.2020.108186.
  • A. Kausar, M. Iqbal, A. Javed, K. Aftab, Z. i. H. Nazli, H.N. Bhatti, S. Nouren, Dyes adsorption using clay and modified clay: A review, J. Mol. Liq. (2018). https://doi.org/10.1016/j.molliq.2018.02.034.
  • R.M. Zakaria, I. Hassan, M.Z. El-Abd, Y.A. El-Tawil, Lactic acid removal from wastewater by using different types of activated clay, in: Thirteen. Int. Water Technol. Conf. (IWTC), Hurghada, Citeseer, 2009: pp. 403–416.
  • M. Zhang, G. Pan, D. Zhao, G. He, XAFS study of starch-stabilized magnetite nanoparticles and surface speciation of arsenate, Environ. Pollut. (2011). https://doi.org/10.1016/j.envpol.2011.08.017.
  • K. Kalantari, M.B. Ahmad, K. Shameli, M.Z. Bin Hussein, R. Khandanlou, H. Khanehzaei, Size-Controlled Synthesis of Fe 3 O 4 Magnetic Nanoparticles in the Layers of Montmorillonite, J. Nanomater. 2014 (2014) 1–9. https://doi.org/10.1155/2014/739485.
  • L. Ma, S.I. Rathnayake, H. He, R. Zhu, J. Zhu, G.A. Ayoko, J. Li, Y. Xi, In situ sequentially generation of acid and ferrous ions for environmental remediation, Chem. Eng. J. (2016). https://doi.org/10.1016/j.cej.2016.05.065.
  • A.D. Eaton, L.S. Clesceri, E.. Rice, A.E. Greenbaerg, M.A.H. Franson, Standard Methods for Examination of Water and Wastewater: Centennial Edition, 2005.
  • J. Chang, J. Ma, Q. Ma, D. Zhang, N. Qiao, M. Hu, H. Ma, Adsorption of methylene blue onto Fe3O4/activated montmorillonite nanocomposite, Appl. Clay Sci. 119 (2016) 132–140. https://doi.org/10.1016/j.clay.2015.06.038.
  • S.M. Lee, D. Tiwari, Organo and inorgano-organo-modified clays in the remediation of aqueous solutions: An overview, Appl. Clay Sci. 59–60 (2012) 84–102. https://doi.org/10.1016/j.clay.2012.02.006.
  • T. Bayram, S. Bucak, D. Ozturk, BR13 dye removal using sodium dodecyl sulfate modified montmorillonite: Equilibrium, thermodynamic, kinetic and reusability studies, Chem. Eng. Process. - Process Intensif. 158 (2020). https://doi.org/10.1016/j.cep.2020.108186.
  • K.G. Bhattacharyya, S. Sen Gupta, Adsorption of Fe(III), Co(II) and Ni(II) on ZrO–kaolinite and ZrO–montmorillonite surfaces in aqueous medium, Colloids Surfaces A Physicochem. Eng. Asp. 317 (2008) 71–79. https://doi.org/10.1016/j.colsurfa.2007.09.037.
  • Y. Kim, Y.K. Kim, J.H. Kim, M.S. Yim, D. Harbottle, J.W. Lee, Synthesis of functionalized porous montmorillonite via solid-state NaOH treatment for efficient removal of cesium and strontium ions, Appl. Surf. Sci. (2018). https://doi.org/10.1016/j.apsusc.2018.04.181.
  • P. Lu, J.L. Zhang, Y.L. Liu, D.H. Sun, G.X. Liu, G.Y. Hong, J.Z. Ni, Synthesis and characteristic of the Fe3O4@SiO 2@Eu(DBM)3·2H2O/SiO2 luminomagnetic microspheres with core-shell structure, Talanta. (2010). https://doi.org/10.1016/j.talanta.2010.04.052.
  • J.A. Lopez, F. González, F.A. Bonilla, G. Zambrano, M.E. Gómez, Synthesis and characterization of Fe3O4 magnetic nanofluid, Rev. Latinoam. Metal. y Mater. (2010).
  • G.R. Mahdavinia, S. Hasanpour, L. Behrouzi, H. Sheykhloie, Study on adsorption of Cu(II) on magnetic starch- g -polyamidoxime/montmorillonite/Fe 3 O 4 nanocomposites as novel chelating ligands, Starch - Stärke. 68 (2016) 188–199. https://doi.org/10.1002/star.201400255.
  • J. Wang, G. Liu, Y. Liu, C. Zhou, Y. Wu, Photocatalytic Degradation of Methyl Orange by Fe 2 O 3 −Fe 3 O 4 Nanoparticles and Fe 2 O 3 −Fe 3 O 4 −Montmorillonite Nanocomposites, CLEAN - Soil, Air, Water. 45 (2017) 1600472. https://doi.org/10.1002/clen.201600472.
  • S. Jebril, R. Khanfir Ben Jenana, C. Dridi, Green synthesis of silver nanoparticles using Melia azedarach leaf extract and their antifungal activities: In vitro and in vivo, Mater. Chem. Phys. 248 (2020) 122898. https://doi.org/10.1016/j.matchemphys.2020.122898.
  • M. Jayapriya, D. Dhanasekaran, M. Arulmozhi, E. Nandhakumar, N. Senthilkumar, K. Sureshkumar, Green synthesis of silver nanoparticles using Piper longum catkin extract irradiated by sunlight: antibacterial and catalytic activity, Res. Chem. Intermed. 45 (2019) 3617–3631. https://doi.org/10.1007/s11164-019-03812-5.
  • Y. Akinay, F. Hayat, B. Çolak, Absorbing properties and structural design of PVB/Fe 3 O 4 nanocomposite, Mater. Chem. Phys. 229 (2019) 460–466. https://doi.org/10.1016/j.matchemphys.2019.03.039.
  • H. Niu, P. Liu, F. Qin, X.L. Liu, Y. Akinay, PEDOT coated Cu-BTC metal-organic frameworks decorated with Fe3O4 nanoparticles and their enhanced electromagnetic wave absorption, Mater. Chem. Phys. 253 (2020) 123458. https://doi.org/10.1016/j.matchemphys.2020.123458.
  • M. Danaei, M. Dehghankhold, S. Ataei, F. Hasanzadeh Davarani, R. Javanmard, A. Dokhani, S. Khorasani, M. Mozafari, Impact of Particle Size and Polydispersity Index on the Clinical Applications of Lipidic Nanocarrier Systems, Pharmaceutics. 10 (2018) 57. https://doi.org/10.3390/pharmaceutics10020057.
  • N.R. Abdelsalam, M.M.G. Fouda, A. Abdel-Megeed, J. Ajarem, A.A. Allam, M.E. El-Naggar, Assessment of silver nanoparticles decorated starch and commercial zinc nanoparticles with respect to their genotoxicity on onion, Int. J. Biol. Macromol. 133 (2019) 1008–1018. https://doi.org/10.1016/j.ijbiomac.2019.04.134.
  • A. Dowek, L.M.M. Lê, T. Rohmer, F.-X. Legrand, H. Remita, I. Lampre, A. Tfayli, M. Lavielle, E. Caudron, A mathematical approach to deal with nanoparticle polydispersity in surface enhanced Raman spectroscopy to quantify antineoplastic agents, Talanta. 217 (2020) 121040. https://doi.org/10.1016/j.talanta.2020.121040.
  • Q.U. Ain, U. Rasheed, M. Yaseen, H. Zhang, Z. Tong, Superior dye degradation and adsorption capability of polydopamine modified Fe3O4-pillared bentonite composite, J. Hazard. Mater. 397 (2020) 122758. https://doi.org/10.1016/j.jhazmat.2020.122758.
  • J. Hua, M. Huang, Heterogeneous Fenton-like degradation of EDTA in an aqueous solution with enhanced COD removal under neutral pH, Water Sci. Technol. 81 (2020) 2432–2440. https://doi.org/10.2166/wst.2020.300.
  • X. Li, K. Cui, Z. Guo, T. Yang, Y. Cao, Y. Xiang, H. Chen, M. Xi, Heterogeneous Fenton-like degradation of tetracyclines using porous magnetic chitosan microspheres as an efficient catalyst compared with two preparation methods, Chem. Eng. J. 379 (2020) 122324. https://doi.org/10.1016/j.cej.2019.122324.
  • B. Guo, T. Xu, L. Zhang, S. Li, A heterogeneous fenton-like system with green iron nanoparticles for the removal of bisphenol A:Performance, kinetics and transformation mechanism, J. Environ. Manage. 272 (2020) 111047. https://doi.org/10.1016/j.jenvman.2020.111047.
  • I. Mironyuk, T. Tatarchuk, H. Vasylyeva, V.M. Gun’ko, I. Mykytyn, Effects of chemosorbed arsenate groups on the mesoporous titania morphology and enhanced adsorption properties towards Sr(II) cations, J. Mol. Liq. (2019). https://doi.org/10.1016/j.molliq.2019.03.026.
  • V. Chittal, M. Gracias, A. Anu, P. Saha, K. V. Bhaskara Rao, Biodecolorization and biodegradation of azo dye reactive orange-16 by marine nocardiopsis sp., Iran. J. Biotechnol. 17 (2019) 18–26. https://doi.org/10.29252/ijb.1551.
  • A.A. Telke, D.C. Kalyani, V. V. Dawkar, S.P. Govindwar, Influence of organic and inorganic compounds on oxidoreductive decolorization of sulfonated azo dye C.I. Reactive Orange 16, J. Hazard. Mater. 172 (2009) 298–309. https://doi.org/10.1016/j.jhazmat.2009.07.008.
  • M.G. Larson, Analysis of Variance, Circulation. 117 (2008) 115–121. https://doi.org/10.1161/CIRCULATIONAHA.107.654335.
  • H.Y. Xu, S.Y. Qi, Y. Li, Y. Zhao, J.W. Li, Heterogeneous Fenton-like discoloration of Rhodamine B using natural schorl as catalyst: Optimization by response surface methodology, Environ. Sci. Pollut. Res. 20 (2013) 5764–5772. https://doi.org/10.1007/s11356-013-1578-0.
  • S. Hussain, E. Aneggi, D. Goi, Catalytic activity of metals in heterogeneous Fenton-like oxidation of wastewater contaminants: a review, Environ. Chem. Lett. 1 (2021) 3. https://doi.org/10.1007/s10311-021-01185-z.
  • I.D. Boateng, X.M. Yang, Process optimization of intermediate-wave infrared drying: Screening by Plackett–Burman; comparison of Box-Behnken and central composite design and evaluation: A case study, Ind. Crops Prod. 162 (2021) 113287. https://doi.org/10.1016/j.indcrop.2021.113287.
  • T. Şahan, D. Öztürk, Investigation of Pb(II) adsorption onto pumice samples: Application of optimization method based on fractional factorial design and response surface methodology, Clean Technol. Environ. Policy. 16 (2014) 819–831. https://doi.org/10.1007/s10098-013-0673-8.
  • S.S. Kashyap, P.R. Gogate, S.M. Joshi, Ultrasound assisted synthesis of biodiesel from karanja oil by interesterification: Intensification studies and optimization using RSM, Ultrason. Sonochem. 50 (2019) 36–45. https://doi.org/10.1016/j.ultsonch.2018.08.019.
  • C.C. Nwobi-Okoye, M.K. Anyichie, C.U. Atuanya, RSM and ANN Modeling for Production of Newbouldia Laevies Fibre and Recycled High Density Polyethylene Composite: Multi Objective Optimization Using Genetic Algorithm, Fibers Polym. 21 (2020) 898–909. https://doi.org/10.1007/s12221-020-9597-1.
  • S. Chamoli, ANN and RSM approach for modeling and optimization of designing parameters for a v down perforated baffle roughened rectangular channel, Alexandria Eng. J. 54 (2015) 429–446. https://doi.org/10.1016/j.aej.2015.03.018.
  • M.O. Akinwande, H.G. Dikko, A. Samson, Variance Inflation Factor: As a Condition for the Inclusion of Suppressor Variable(s) in Regression Analysis, Open J. Stat. 05 (2015) 754–767. https://doi.org/10.4236/ojs.2015.57075.
  • D. Ozturk, E. Dagdas, B.A. Fil, M.J.K. Bashir, Central composite modeling for electrochemical degradation of paint manufacturing plant wastewater: One-step/two-response optimization, Environ. Technol. Innov. 21 (2020) 101264. https://doi.org/10.1016/j.eti.2020.101264.
  • M.Z. Hassan, S.M. Sapuan, S.A. Roslan, S.A. Aziz, S. Sarip, Optimization of tensile behavior of banana pseudo-stem (Musa acuminate) fiber reinforced epoxy composites using response surface methodology, J. Mater. Res. Technol. (2019). https://doi.org/10.1016/j.jmrt.2019.06.026.
  • M.A. Barakat, R. Kumar, E.C. Lima, M.K. Seliem, Facile synthesis of muscovite–supported Fe3O4 nanoparticles as an adsorbent and heterogeneous catalyst for effective removal of methyl orange: Characterisation, modelling, and mechanism, J. Taiwan Inst. Chem. Eng. 119 (2021) 146–157. https://doi.org/10.1016/j.jtice.2021.01.025.
  • A. Mashayekh-Salehi, K. Akbarmojeni, A. Roudbari, J. Peter van der Hoek, R. Nabizadeh, M.H. Dehghani, K. Yaghmaeian, Use of mine waste for H2O2-assisted heterogeneous Fenton-like degradation of tetracycline by natural pyrite nanoparticles: Catalyst characterization, degradation mechanism, operational parameters and cytotoxicity assessment, J. Clean. Prod. 291 (2021) 125235. https://doi.org/10.1016/j.jclepro.2020.125235.
  • G. Imoberdorf, M. Mohseni, Degradation of natural organic matter in surface water using vacuum-UV irradiation, J. Hazard. Mater. 186 (2011) 240–246. https://doi.org/10.1016/j.jhazmat.2010.10.118.
  • J. Sharma, I.M. Mishra, V. Kumar, Degradation and mineralization of Bisphenol A (BPA) in aqueous solution using advanced oxidation processes: UV/H2O2 and UV/S2O82− oxidation systems, J. Environ. Manage. 156 (2015) 266–275. https://doi.org/10.1016/j.jenvman.2015.03.048.
  • N. Sétifi, N. Debbache, T. Sehili, O. Halimi, Heterogeneous Fenton-like oxidation of naproxen using synthesized goethite-montmorillonite nanocomposite, J. Photochem. Photobiol. A Chem. 370 (2019) 67–74. https://doi.org/10.1016/j.jphotochem.2018.10.033.
  • A. Tolba, M. Gar Alalm, M. Elsamadony, A. Mostafa, H. Afify, D.D. Dionysiou, Modeling and optimization of heterogeneous Fenton-like and photo-Fenton processes using reusable Fe3O4-MWCNTs, Process Saf. Environ. Prot. 128 (2019) 273–283. https://doi.org/10.1016/j.psep.2019.06.011.
  • M. Arshadi, M.K. Abdolmaleki, F. Mousavinia, A. Khalafi-Nezhad, H. Firouzabadi, A. Gil, Degradation of methyl orange by heterogeneous Fenton-like oxidation on a nano-organometallic compound in the presence of multi-walled carbon nanotubes, Chem. Eng. Res. Des. 112 (2016) 113–121.
  • H.L. So, K.Y. Lin, W. Chu, Triclosan removal by heterogeneous Fenton-like process: Studying the kinetics and surface chemistry of Fe3O4 as catalyst, J. Environ. Chem. Eng. 7 (2019) 103432. https://doi.org/10.1016/j.jece.2019.103432.
  • C. Ma, Z. He, S. Jia, X. Zhang, S. Hou, Treatment of stabilized landfill leachate by Fenton-like process using Fe3O4 particles decorated Zr-pillared bentonite, Ecotoxicol. Environ. Saf. 161 (2018) 489–496.
  • C. Shao-Hua(陈绍华, D.-Y. Du, Degradation of n-butyl xanthate using fly ash as heterogeneous Fenton-like catalyst, J. Cent. South Univ. 21 (2014) 1448–1452. https://doi.org/10.1007/s11771-014-2084-3.
  • I. Hirsch, E. Prell, M. Weiwad, Assessment of cell death studies by monitoring hydrogen peroxide in cell culture, Anal. Biochem. 456 (2014) 22–24.
Toplam 70 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Articles
Yazarlar

Dilara Öztürk 0000-0003-2689-560X

Yayımlanma Tarihi 28 Şubat 2022
Kabul Tarihi 5 Ağustos 2021
Yayımlandığı Sayı Yıl 2022 Cilt: 50 Sayı: 2

Kaynak Göster

APA Öztürk, D. (2022). Degradation of Reactive Orange 16 dye with heterogeneous Fenton Process using magnetic nano-sized clay as catalyst: A central composite optimization study. Hacettepe Journal of Biology and Chemistry, 50(2), 113-129. https://doi.org/10.15671/hjbc.937728
AMA Öztürk D. Degradation of Reactive Orange 16 dye with heterogeneous Fenton Process using magnetic nano-sized clay as catalyst: A central composite optimization study. HJBC. Şubat 2022;50(2):113-129. doi:10.15671/hjbc.937728
Chicago Öztürk, Dilara. “Degradation of Reactive Orange 16 Dye With Heterogeneous Fenton Process Using Magnetic Nano-Sized Clay As Catalyst: A Central Composite Optimization Study”. Hacettepe Journal of Biology and Chemistry 50, sy. 2 (Şubat 2022): 113-29. https://doi.org/10.15671/hjbc.937728.
EndNote Öztürk D (01 Şubat 2022) Degradation of Reactive Orange 16 dye with heterogeneous Fenton Process using magnetic nano-sized clay as catalyst: A central composite optimization study. Hacettepe Journal of Biology and Chemistry 50 2 113–129.
IEEE D. Öztürk, “Degradation of Reactive Orange 16 dye with heterogeneous Fenton Process using magnetic nano-sized clay as catalyst: A central composite optimization study”, HJBC, c. 50, sy. 2, ss. 113–129, 2022, doi: 10.15671/hjbc.937728.
ISNAD Öztürk, Dilara. “Degradation of Reactive Orange 16 Dye With Heterogeneous Fenton Process Using Magnetic Nano-Sized Clay As Catalyst: A Central Composite Optimization Study”. Hacettepe Journal of Biology and Chemistry 50/2 (Şubat 2022), 113-129. https://doi.org/10.15671/hjbc.937728.
JAMA Öztürk D. Degradation of Reactive Orange 16 dye with heterogeneous Fenton Process using magnetic nano-sized clay as catalyst: A central composite optimization study. HJBC. 2022;50:113–129.
MLA Öztürk, Dilara. “Degradation of Reactive Orange 16 Dye With Heterogeneous Fenton Process Using Magnetic Nano-Sized Clay As Catalyst: A Central Composite Optimization Study”. Hacettepe Journal of Biology and Chemistry, c. 50, sy. 2, 2022, ss. 113-29, doi:10.15671/hjbc.937728.
Vancouver Öztürk D. Degradation of Reactive Orange 16 dye with heterogeneous Fenton Process using magnetic nano-sized clay as catalyst: A central composite optimization study. HJBC. 2022;50(2):113-29.

HACETTEPE JOURNAL OF BIOLOGY AND CHEMİSTRY

Copyright © Hacettepe University Faculty of Science

http://www.hjbc.hacettepe.edu.tr/

https://dergipark.org.tr/tr/pub/hjbc