Review
BibTex RIS Cite
Year 2024, Volume: 52 Issue: 5, 235 - 244, 12.12.2024
https://doi.org/10.15671/hjbc.1571520

Abstract

References

  • R.T. Peterson, C.A. MacRae, Changing the scale and efficiency of chemical warfare countermeasure discovery using the zebrafish, Drug Discov Today Dis Models, 10 (2013) e37–e42.
  • V. Pitschmann, Overall view of chemical and biochemical weapons, Toxins, 6 (2014) 1761–1784.
  • L. Szinicz, History of chemical and biological warfare agents, Toxicology, 214 (2005) 167–181.
  • S. Sezigen Chapter 1: Introduction and History: S. Sezigen, L. Kenar (Editors:), Practical guide for the medical management of chemical war casualties, organization for the prohibition of chemical weapons (OPCW) (Turkish Translation ), University of Health Sciences, Ankara, Turkey, 2016.
  • R. Black, Problems in toxicology, basic aspects of chemical warfare toxicology, development of chemical warfare agents, historical use and properties (Vol. 1, 1st ed., S. Sezigen, Turkish Translation.), EMA Tıp Kitapevi, Ankara, Turkey, 2021.
  • S. Sezigen, K. Ivelik, M. Ortatatli, M. Almacioglu, M. Demirkasimoglu, R.K. Eyison, Z.I. Kunak, L. Kenar, Victims of chemical terrorism, a family of four who were exposed to sulfur mustard, Toxicol Lett., 303 (2019) 9–15.
  • J.A. Koenig, T.L. Dao, R.K. Kan, T. Shih, Zebrafish as a model for acetylcholinesterase‐inhibiting organophosphorus agent exposure and oxime reactivation, Ann N Y Acad Sci., 1374 (2016) 68–77.
  • M. Schwenk, Chemical warfare agents Classes and targets, Toxicol Lett., 293 (2018) 253–263.
  • A.J. Hill, H. Teraoka, W. Heideman, R.E. Peterson, Zebrafish as a model vertebrate for investigating chemical toxicity, Toxicological Sciences, 86 (2005) 6–19.
  • S. Burgess, New techniques for using zebrafish as a model for development, Methods, 39 (2006) 181–182.
  • J.R. Meyers, Zebrafish: Development of a vertebrate model organism, Curr Protoc Essent Lab Tech., 16 (2018) e19.
  • S. Jin, KS. Sarkar, Y.N. Jin, Y. Liu, D. Kokel, T.J. Van Ham, L.D. Roberts, R.E. Gerszten, CA. MacRae, RT. Peterson, An in vivo zebrafish screen identifies organophosphate antidotes with diverse mechanisms of action, J Biomol Screen., 18 (2013) 108–115.
  • N.A. Ducharme, LE. Peterson, E. Benfenati, D. Reif, CW. McCollum, JÅ. Gustafsson, M. Bondesson, Meta-analysis of toxicity and teratogenicity of 133 chemicals from zebrafish developmental zoxicity studies, Reprod Toxicol., 41 (2013) 98–108.
  • IlluScientia, Life cycle of a zebra fish from fertilization to an adult-zebrafish_cycle.png (2013) https://upload.wikimedia.org/wikipedia/commons/f/f9/Zebrafish_Cycle.png (accessed October 10, 2024)
  • C.A. MacRae, RT. Peterson, Zebrafish-based small molecule discovery, Chem Biol., 10 (2003) 901–908.
  • T. Teame, Z. Zhang, C. Ran, H. Zhang, Y. Yang, Q. Ding, M. Xie, C. Gao, Y. Ye, M. Duan, Z. Zhou, The use of zebrafish (Danio rerio) as biomedical models, Anim Front., 9 (2019) 68.
  • G. Audira, P. Siregar, S.A. Strungaru, J.C. Huang, C. Der Hsiao, Which zebrafish strains are more suitable to perform behavioral studies? A comprehensive comparison by phenomic approach, Biology (Basel), 9 (2020) 1–22.
  • P.F. Silva, C. Garcia-de-Leaniz, F.A.M. Freire, V.A.M. Silveira, A.C. Luchiari, Different housing conditions for zebrafish: What are the effects? behavioural processes, 209 (2023) 104886.
  • J. Brock, Research illustration, Francis crick institute science photo library, Zebrafish anatomy illustration (2024) https://www.sciencephoto.com/contributor/fxb/ (accessed October 03, 2024).
  • S. Singh, K. Gautam, SS. Mir, S. Anbumani, Genotoxicity and cytotoxicity assessment of “forever chemicals” in zebrafish (Danio rerio), Mutat Res Genet Toxicol Environ Mutagen, 897 (2024) 503788.
  • J. Buschmann, The OECD guidelines for the testing of chemicals and pesticides, Methods Mol Biol., 947 (2013) 37–56.
  • F. Busquet, R. Strecker, J.M. Rawlings, S.E. Belanger, T. Braunbeck, GJ. Carr, P. Cenijn, P. Fochtman, A. Gourmelon, N. Hübler, A. Kleensang, M. Knöbel, C. Kussatz, J. Legler, A. Lillicrap, F. Martínez-Jerónimo, C. Polleichtner, H. Rzodeczko, E. Salinas, K.E. Schneider, et al., OECD validation study to assess intra- and inter-laboratory reproducibility of the zebrafish embryo toxicity test for acute aquatic toxicity testing, Regulatory Toxicology and Pharmacology, 69 (2014) 496–511.
  • M. Faria, N. Garcia-Reyero, F. Padrós, P.J. Babin, D. Sebastián, J. Cachot, E. Prats, M. Arick, E. Rial, A. Knoll-Gellida, G. Mathieu, F. Le Bihanic, B.L. Escalon, A. Zorzano, A.M.V.M. Soares, D. Ralduá, Zebrafish models for human acute organophosphorus poisoning, Scientific Reports, 5 (2015) 1–16.
  • H.R. Schmidt, Z. Radić, P. Taylor, E.A. Fradinger, Quaternary and tertiary aldoxime antidotes for organophosphate exposure in a zebrafish model system, Toxicol Appl Pharmacol., 284 (2015) 197–203.
  • J.A. Koenig, C.A. Chen, T.M. Shih, Development of a larval zebrafish model for acute organophosphorus nerve agent and pesticide exposure and therapeutic evaluation, Toxics, 8 (2020) 1–11.
  • L.E. Dubrana, A. Knoll-Gellida, L.M. Bourcier, T. Mercé, S. Pedemay, F. Nachon, A.G. Calas, R. Baati, M. Soares, P.J. Babin, An antidote screening system for organophosphorus poisoning using zebrafish larvae, ACS Chem Neurosci., 12 (2021) 2865–2877.
  • K.L. Yozzo, S.P. McGee, D.C. Volz, Adverse outcome pathways during zebrafish embryogenesis: A case study with paraoxon, Aquat Toxicol, 126 (2013) 346–354.
  • W. Wilczynski, T. Brzeziński, P. Maszczyk, A. Ludew, M.J. Czub, D. Dziedzic, J. Nawala, S. Popiel, J. Beldowski, H. Sanderson, M. Radlinska, Acute toxicity of organoarsenic chemical warfare agents to Danio rerio embryos, Ecotoxicol Environ Saf., 262 (2023) 115116.
  • H. Wang, C. Ma, C. Liu, L. Sun, Y. Wang, J. Xue, B. Zhao, W. Dong, The c-Fos/AP-1 inhibitor inhibits sulfur mustard-induced chondrogenesis impairment in zebrafish larvae, Chemosphere, 359 (2024).
  • C.M. Carbaugh, M.W. Widder, C.S. Phillips, D.A. Jackson, V.T. DiVito, W.H. van der Schalie, K.P. Glover, Assessment of zebrafish embryo photomotor response sensitivity and phase‐specific patterns following acute‐ and long‐duration exposure to neurotoxic chemicals and chemical weapon precursors, Journal of Applied Toxicology, 40 (2020) 1272.
  • A.K. Nath, L.D. Roberts, Y. Liu, S.B. Mahon, S. Kim, J.H. Ryu, A. Werdich, J.L. Januzzi, G.R. Boss, G.A. Rockwood, C.A. MacRae, M. Brenner, R.E. Gerszten, R.T. Peterson, Chemical and metabolomic screens identify novel biomarkers and antidotes for cyanide exposure, FASEB J., 27 (2013) 1928–1938.
  • C.S. Porteus, J. Pollack, V. Tzaneva, R.W.M. Kwong, Y. Kumai, S.J. Abdallah, G. Zaccone, E.R. Lauriano, W.K. Milsom, S.F. Perry, A role for nitric oxide in the control of breathing in zebrafish (Danio rerio), J Exp Biol., 218 (2015) 3746–3753.
  • M.L. Kent, C. Buchner, C. Barton, R.L. Tanguay, Toxicity of chlorine to zebrafish embryos, Dis Aquat Organ, 107 (2014) 235–240.

Zebrafish (Danio rerio): A Pioneer Model in Medical Chemical Defense Researches

Year 2024, Volume: 52 Issue: 5, 235 - 244, 12.12.2024
https://doi.org/10.15671/hjbc.1571520

Abstract

Preparing the highest level of preparedness plans and treatment procedures against the adverse effects of chemical warfare agents (CWA) is the most important component of chemical defense. Currently, the zebrafish (Danio rerio) model, which exhibits superior qualities compared to rodents for evaluating CWA effects, is the most important subject of this study. An overview of the zebrafish model and existing research using this model in CWA studies is presented. The anatomical and physiological features of the zebrafish have made it a popular model organism. Literature studies have shown that the zebrafish model is a versatile model for observing the effects of CWA.

Ethical Statement

Etik kurallara uygun hareket ettiğimizi beyan ederiz.

References

  • R.T. Peterson, C.A. MacRae, Changing the scale and efficiency of chemical warfare countermeasure discovery using the zebrafish, Drug Discov Today Dis Models, 10 (2013) e37–e42.
  • V. Pitschmann, Overall view of chemical and biochemical weapons, Toxins, 6 (2014) 1761–1784.
  • L. Szinicz, History of chemical and biological warfare agents, Toxicology, 214 (2005) 167–181.
  • S. Sezigen Chapter 1: Introduction and History: S. Sezigen, L. Kenar (Editors:), Practical guide for the medical management of chemical war casualties, organization for the prohibition of chemical weapons (OPCW) (Turkish Translation ), University of Health Sciences, Ankara, Turkey, 2016.
  • R. Black, Problems in toxicology, basic aspects of chemical warfare toxicology, development of chemical warfare agents, historical use and properties (Vol. 1, 1st ed., S. Sezigen, Turkish Translation.), EMA Tıp Kitapevi, Ankara, Turkey, 2021.
  • S. Sezigen, K. Ivelik, M. Ortatatli, M. Almacioglu, M. Demirkasimoglu, R.K. Eyison, Z.I. Kunak, L. Kenar, Victims of chemical terrorism, a family of four who were exposed to sulfur mustard, Toxicol Lett., 303 (2019) 9–15.
  • J.A. Koenig, T.L. Dao, R.K. Kan, T. Shih, Zebrafish as a model for acetylcholinesterase‐inhibiting organophosphorus agent exposure and oxime reactivation, Ann N Y Acad Sci., 1374 (2016) 68–77.
  • M. Schwenk, Chemical warfare agents Classes and targets, Toxicol Lett., 293 (2018) 253–263.
  • A.J. Hill, H. Teraoka, W. Heideman, R.E. Peterson, Zebrafish as a model vertebrate for investigating chemical toxicity, Toxicological Sciences, 86 (2005) 6–19.
  • S. Burgess, New techniques for using zebrafish as a model for development, Methods, 39 (2006) 181–182.
  • J.R. Meyers, Zebrafish: Development of a vertebrate model organism, Curr Protoc Essent Lab Tech., 16 (2018) e19.
  • S. Jin, KS. Sarkar, Y.N. Jin, Y. Liu, D. Kokel, T.J. Van Ham, L.D. Roberts, R.E. Gerszten, CA. MacRae, RT. Peterson, An in vivo zebrafish screen identifies organophosphate antidotes with diverse mechanisms of action, J Biomol Screen., 18 (2013) 108–115.
  • N.A. Ducharme, LE. Peterson, E. Benfenati, D. Reif, CW. McCollum, JÅ. Gustafsson, M. Bondesson, Meta-analysis of toxicity and teratogenicity of 133 chemicals from zebrafish developmental zoxicity studies, Reprod Toxicol., 41 (2013) 98–108.
  • IlluScientia, Life cycle of a zebra fish from fertilization to an adult-zebrafish_cycle.png (2013) https://upload.wikimedia.org/wikipedia/commons/f/f9/Zebrafish_Cycle.png (accessed October 10, 2024)
  • C.A. MacRae, RT. Peterson, Zebrafish-based small molecule discovery, Chem Biol., 10 (2003) 901–908.
  • T. Teame, Z. Zhang, C. Ran, H. Zhang, Y. Yang, Q. Ding, M. Xie, C. Gao, Y. Ye, M. Duan, Z. Zhou, The use of zebrafish (Danio rerio) as biomedical models, Anim Front., 9 (2019) 68.
  • G. Audira, P. Siregar, S.A. Strungaru, J.C. Huang, C. Der Hsiao, Which zebrafish strains are more suitable to perform behavioral studies? A comprehensive comparison by phenomic approach, Biology (Basel), 9 (2020) 1–22.
  • P.F. Silva, C. Garcia-de-Leaniz, F.A.M. Freire, V.A.M. Silveira, A.C. Luchiari, Different housing conditions for zebrafish: What are the effects? behavioural processes, 209 (2023) 104886.
  • J. Brock, Research illustration, Francis crick institute science photo library, Zebrafish anatomy illustration (2024) https://www.sciencephoto.com/contributor/fxb/ (accessed October 03, 2024).
  • S. Singh, K. Gautam, SS. Mir, S. Anbumani, Genotoxicity and cytotoxicity assessment of “forever chemicals” in zebrafish (Danio rerio), Mutat Res Genet Toxicol Environ Mutagen, 897 (2024) 503788.
  • J. Buschmann, The OECD guidelines for the testing of chemicals and pesticides, Methods Mol Biol., 947 (2013) 37–56.
  • F. Busquet, R. Strecker, J.M. Rawlings, S.E. Belanger, T. Braunbeck, GJ. Carr, P. Cenijn, P. Fochtman, A. Gourmelon, N. Hübler, A. Kleensang, M. Knöbel, C. Kussatz, J. Legler, A. Lillicrap, F. Martínez-Jerónimo, C. Polleichtner, H. Rzodeczko, E. Salinas, K.E. Schneider, et al., OECD validation study to assess intra- and inter-laboratory reproducibility of the zebrafish embryo toxicity test for acute aquatic toxicity testing, Regulatory Toxicology and Pharmacology, 69 (2014) 496–511.
  • M. Faria, N. Garcia-Reyero, F. Padrós, P.J. Babin, D. Sebastián, J. Cachot, E. Prats, M. Arick, E. Rial, A. Knoll-Gellida, G. Mathieu, F. Le Bihanic, B.L. Escalon, A. Zorzano, A.M.V.M. Soares, D. Ralduá, Zebrafish models for human acute organophosphorus poisoning, Scientific Reports, 5 (2015) 1–16.
  • H.R. Schmidt, Z. Radić, P. Taylor, E.A. Fradinger, Quaternary and tertiary aldoxime antidotes for organophosphate exposure in a zebrafish model system, Toxicol Appl Pharmacol., 284 (2015) 197–203.
  • J.A. Koenig, C.A. Chen, T.M. Shih, Development of a larval zebrafish model for acute organophosphorus nerve agent and pesticide exposure and therapeutic evaluation, Toxics, 8 (2020) 1–11.
  • L.E. Dubrana, A. Knoll-Gellida, L.M. Bourcier, T. Mercé, S. Pedemay, F. Nachon, A.G. Calas, R. Baati, M. Soares, P.J. Babin, An antidote screening system for organophosphorus poisoning using zebrafish larvae, ACS Chem Neurosci., 12 (2021) 2865–2877.
  • K.L. Yozzo, S.P. McGee, D.C. Volz, Adverse outcome pathways during zebrafish embryogenesis: A case study with paraoxon, Aquat Toxicol, 126 (2013) 346–354.
  • W. Wilczynski, T. Brzeziński, P. Maszczyk, A. Ludew, M.J. Czub, D. Dziedzic, J. Nawala, S. Popiel, J. Beldowski, H. Sanderson, M. Radlinska, Acute toxicity of organoarsenic chemical warfare agents to Danio rerio embryos, Ecotoxicol Environ Saf., 262 (2023) 115116.
  • H. Wang, C. Ma, C. Liu, L. Sun, Y. Wang, J. Xue, B. Zhao, W. Dong, The c-Fos/AP-1 inhibitor inhibits sulfur mustard-induced chondrogenesis impairment in zebrafish larvae, Chemosphere, 359 (2024).
  • C.M. Carbaugh, M.W. Widder, C.S. Phillips, D.A. Jackson, V.T. DiVito, W.H. van der Schalie, K.P. Glover, Assessment of zebrafish embryo photomotor response sensitivity and phase‐specific patterns following acute‐ and long‐duration exposure to neurotoxic chemicals and chemical weapon precursors, Journal of Applied Toxicology, 40 (2020) 1272.
  • A.K. Nath, L.D. Roberts, Y. Liu, S.B. Mahon, S. Kim, J.H. Ryu, A. Werdich, J.L. Januzzi, G.R. Boss, G.A. Rockwood, C.A. MacRae, M. Brenner, R.E. Gerszten, R.T. Peterson, Chemical and metabolomic screens identify novel biomarkers and antidotes for cyanide exposure, FASEB J., 27 (2013) 1928–1938.
  • C.S. Porteus, J. Pollack, V. Tzaneva, R.W.M. Kwong, Y. Kumai, S.J. Abdallah, G. Zaccone, E.R. Lauriano, W.K. Milsom, S.F. Perry, A role for nitric oxide in the control of breathing in zebrafish (Danio rerio), J Exp Biol., 218 (2015) 3746–3753.
  • M.L. Kent, C. Buchner, C. Barton, R.L. Tanguay, Toxicity of chlorine to zebrafish embryos, Dis Aquat Organ, 107 (2014) 235–240.
There are 33 citations in total.

Details

Primary Language English
Subjects Medicinal and Biomolecular Chemistry (Other)
Journal Section Research Article
Authors

Ayla Sayın Öztürk 0000-0001-7579-750X

Sermet Sezigen 0000-0002-4658-5046

Publication Date December 12, 2024
Submission Date October 22, 2024
Acceptance Date December 2, 2024
Published in Issue Year 2024 Volume: 52 Issue: 5

Cite

APA Sayın Öztürk, A., & Sezigen, S. (2024). Zebrafish (Danio rerio): A Pioneer Model in Medical Chemical Defense Researches. Hacettepe Journal of Biology and Chemistry, 52(5), 235-244. https://doi.org/10.15671/hjbc.1571520
AMA Sayın Öztürk A, Sezigen S. Zebrafish (Danio rerio): A Pioneer Model in Medical Chemical Defense Researches. HJBC. December 2024;52(5):235-244. doi:10.15671/hjbc.1571520
Chicago Sayın Öztürk, Ayla, and Sermet Sezigen. “Zebrafish (Danio rerio): A Pioneer Model in Medical Chemical Defense Researches”. Hacettepe Journal of Biology and Chemistry 52, no. 5 (December 2024): 235-44. https://doi.org/10.15671/hjbc.1571520.
EndNote Sayın Öztürk A, Sezigen S (December 1, 2024) Zebrafish (Danio rerio): A Pioneer Model in Medical Chemical Defense Researches. Hacettepe Journal of Biology and Chemistry 52 5 235–244.
IEEE A. Sayın Öztürk and S. Sezigen, “Zebrafish (Danio rerio): A Pioneer Model in Medical Chemical Defense Researches”, HJBC, vol. 52, no. 5, pp. 235–244, 2024, doi: 10.15671/hjbc.1571520.
ISNAD Sayın Öztürk, Ayla - Sezigen, Sermet. “Zebrafish (Danio rerio): A Pioneer Model in Medical Chemical Defense Researches”. Hacettepe Journal of Biology and Chemistry 52/5 (December 2024), 235-244. https://doi.org/10.15671/hjbc.1571520.
JAMA Sayın Öztürk A, Sezigen S. Zebrafish (Danio rerio): A Pioneer Model in Medical Chemical Defense Researches. HJBC. 2024;52:235–244.
MLA Sayın Öztürk, Ayla and Sermet Sezigen. “Zebrafish (Danio rerio): A Pioneer Model in Medical Chemical Defense Researches”. Hacettepe Journal of Biology and Chemistry, vol. 52, no. 5, 2024, pp. 235-44, doi:10.15671/hjbc.1571520.
Vancouver Sayın Öztürk A, Sezigen S. Zebrafish (Danio rerio): A Pioneer Model in Medical Chemical Defense Researches. HJBC. 2024;52(5):235-44.

HACETTEPE JOURNAL OF BIOLOGY AND CHEMİSTRY

Copyright © Hacettepe University Faculty of Science

http://www.hjbc.hacettepe.edu.tr/

https://dergipark.org.tr/tr/pub/hjbc