Araştırma Makalesi
BibTex RIS Kaynak Göster

Çoklu-GNSS çözümlerinin performansının internet tabanlı Trimble RTX servisi ile incelenmesi

Yıl 2021, Cilt: 8 Sayı: 1, 30 - 40, 01.05.2021
https://doi.org/10.9733/JGG.2021R0003.T

Öz

Günümüzde jeodezik amaçlı yapılan çalışmaların birçoğunda Küresel Konumlama ve Uydu Sistemleri’ne (Global Navigation Satellite System, GNSS) ait veriler kullanılmaktadır. GNSS yapısında, GPS, GLONASS, Galileo ve BeiDou uydu sistemleri beraber değerlendirilerek konum bilgisi elde edilebilmektedir. Uluslararası GNSS Servisi (International GNSS Service, IGS) bu amaç doğrultusunda farklı sinyal ve uydu sistem verilerinin toplanması, izlenmesi ve analiz edilmesi için Multi-GNSS Experiment (MGEX) adında bir proje başlatmıştır. Çoklu-GNSS çözümlerinin kullanılmaya başlamasından dolayı, bu çözümlerden elde edilen konum doğruluğunun belirlenmesi kullanıcılar açısından büyük önem arz etmektedir. Bu nedenle bu çalışmada; 10 noktaya ait GNSS verileri; GPS, GPS/GLONASS, GPS/GLONASS/Galileo ve GPS/GLONASS/Galileo/BeiDou olmak üzere 4 farklı senaryo ile değerlendirilmiş ve doğruluk analizleri gerçekleştirilmiştir. GNSS verilerinin değerlendirilmesi bir internet tabanlı yazılım olan ve Çoklu-GNSS hassas mutlak nokta konumlama (Precise Point Positioning, PPP) çözüm kapasitesine sahip Trimble RTX servisi ile gerçekleştirilmiştir. Sonuçlar, sadece GPS çözümleri yerine farklı uydu kombinasyonlarını birlikte kullanarak daha yüksek doğrulukla konum bilgisi elde edilebileceğini göstermiştir. Ayrıca, Çoklu-GNSS çözüm doğruluklarının gözlem süresi ve enlem bilgisine bağlı olup olmadığı da incelenmiştir. Sonuçlara göre Çoklu-GNSS çözüm doğruluklarının sadece gözlem süresine bağlı olarak değiştiği vurgulanmıştır.

Kaynakça

  • Albayrak, M., Erdoğan, B., & Erkaya, H. (2020). Performance analysis of web-based relative and precise point positioning techniques with different satellite visibility conditions. Boletim de Ciências Geodésicas, 26(1).
  • Bisnath, S., & Gao, Y. (2009). Current state of precise point positioning and future prospects and limitations. Observing our changing earth , s. 615-623. Springer, Berlin, Heidelberg.
  • Doucet, K., Herwig, M., Kipka, A., Kreikenbohm, P., Landau, H., Leandro, R., Moessmer, M., & Pagels, C. (2012). Introducing ambiguity resolution in webhosted global multi-GNSS precise positioning with Trimble RTX-PP. Proceedings of the 25th International Technical Meeting of The Satellite Division of the Institute of Navigation, 17, 1115-1125.
  • Eckl, M. C., Snay, R. A., Soler, T., Cline, M. W., & Mader, G. L. (2001). Accuracy of GPS-derived relative positions as a function of interstation distance and observing-session duration. Journal of geodesy, 75(12), 633-640.
  • Erdoğan, B., Kayacık, O., & Doğan, A.H. (2019). Hassas mutlak nokta konumlamada GIPSY-OASIS II v6.4 yazılımı ile elde edilen varyans kovaryans matrisinin güvenirliğinin araştırılması. Jeodezi ve Jeoinformasyon Dergisi , 6(2) , 75-86.
  • Erdoğan, B., & Doğan, A.H. (2019). Scaling of the variance covariance matrix obtained from Bernese software. Acta Geodaetica et Geophysica, 54(2), 197-211.
  • Gao, Y., & Shen, X. (2001). Improving ambiguity convergence in carrier phase-based precise point positioning. Proceedings of the 14th international technical meeting of the Satellite Division of the Institute of Navigation, 1532-1539.
  • Geng, J., Teferle, F. N., Meng, X., & Dodson, A. H. (2011). Towards PPP-RTK: Ambiguity resolution in real-time precise point positioning. Advances in space research, 47(10), 1664-1673.
  • Hampel, F. R., Ronchetti, E. M., Rousseeuw, P. J., & Stahel, W. A. (2011). Robust statistics: the approach based on influence functions. John Wiley & Sons.
  • Hekimoğlu, Ş. (2005). Do Robust Methods Identify Outliniers More Reliably Than Conventional Tests for Outliniers ?. ZfV magazine for geodesy, geoinformation and land management, 3, 174-180.
  • Koch, K.-R. (2013). Parameter estimation and hypothesis testing in linear models, Springer Science & Business Media.
  • Kouba, J., & Héroux, P. (2001). Precise point positioning using IGS orbit and clock products. GPS solutions, 5(2), 12-28.
  • Li, X., Ge, M., Dai, X., Ren, X., Fritsche, M., Wickert, J., & Schuh, H. (2015). Accuracy and reliability of multi-GNSS real-time precise positioning: GPS, GLONASS, BeiDou, and Galileo. Journal of Geodesy, 89(6), 607-635.
  • Montenbruck, O., Steigenberger, P., Prange, L., Deng, Z., Zhao, Q., Perosanz, F., Romero, I., Noll, C., Stürze, A., & Weber, G. (2017). The Multi-GNSS Experiment (MGEX) of the International GNSS Service (IGS)–achievements, prospects and challenges. Advances in Space Research, 59(7), 1671-1697.
  • Öcalan, T., Erdoğan, B., & Tunalıoğlu, N. (2013). Analysis of web-based online services for GPS relative and precise point positioning techniques. Boletim de ciencias geodesicas, 19(2), 191-207.
  • Öcalan T. (2015). GNSS Ağlarında GPS Hassas Nokta Konumlama (GPS-PPP) Tekniği Yaklaşımlı Çözümler (Doktora Tezi). Yıldız Teknik Üniversitesi, Fen Bilimleri Enstitüsü, İstanbul, Türkiye.
  • Öğütcü, S. (2019). The contribution of Multi-GNSS Experiment (MGEX) to precise point positioning over Turkey: Consideration of observation time and satellite geometry. El-Cezeri Journal of Science and Engineering, 6(3), 642-658.
  • Öğütcü, S. (2020). Assessing the contribution of Galileo to GPS+ GLONASS PPP: Towards full operational capability. Measurement, 151, 107143.
  • Rizos, C., Janssen, V., Roberts, C., & Grinter, T. (2012), Precise Point Positioning: Is the Era of Differential GNSS Positioning Drawing to an End? FIG Working Week 2012, Roma, İtalya.
  • Saraçoğlu, A., & Şanli, D. U. (2020). Effect of meteorological seasons on the accuracy of GPS positioning. Measurement, 152, 107301.
  • Soler, T., Michalak, P., Weston, N. D., Snay, R. A., & Foote, R. H. (2006). Accuracy of OPUS solutions for 1-to 4-h observing sessions. GPS solutions, 10(1), 45-55.
  • Soycan, M., & Öcalan, T. (2011). A regression study on relative GPS accuracy for different variables. Survey Review, 43(320), 137-149.
  • Şanlı, D. U., & Engin, C. (2009). Accuracy of GPS positioning over regional scales. Survey Review, 41(312), 192-200.
  • Şanlı, D. U., & Tekiç, S. (2010). Accuracy of GPS precise point positioning: A tool for GPS accuracy prediction. Lambert Acad. Publ.
  • Toluc, A. B. (2016). Multi-GNSS Precise Point Positioning Using GPS, GLONASS and Galileo (Yüksek Lisans Tezi). The Ohio State University, Graduate School of The Ohio State University, Ohio, Amerika Birleşik Devletleri.
  • Tut, İ., Şanlı, D. U., Erdoğan, B., & Hekimoğlu, Ş. (2013). Efficiency of BERNESE single baseline rapid static positioning solutions with search strategy. Survey review, 45(331), 296-304.
  • Wang, J., Wu, Z., Semmling, M., Zus, F., Gerland, S., Ramatschi, M., Ge, M., Wickert, J., & Schuh, H. (2019). Retrieving Precipitable Water Vapor From Shipborne Multi‐GNSS Observations. Geophysical Research Letters, 46(9), 5000-5008.
  • Wessel, P., & Smith, W. H. (1998). New, improved version of Generic Mapping Tools released. Eos, Transactions American Geophysical Union, 79(47), 579-579.
  • Xia, F., Ye, S., Xia, P., Zhao, L., Jiang, N., Chen, D., & Hu, G. (2019). Assessing the latest performance of Galileo-only PPP and the contribution of Galileo to Multi-GNSS PPP. Advances in space research, 63(9), 2784-2795.
  • Yapıcı, T. (2007). Influences of interplanetary magnetic field on the variability of aerospace media (Yüksek Lisans Tezi), Orta Doğu Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Ankara, Türkiye.
  • Zumberge, J. F., Heflin, M. B., Jefferson, D. C., Watkins, M. M., & Webb, F. H. (1997). Precise point positioning for the efficient and robust analysis of GPS data from large networks. Journal of geophysical research: solid earth, 102(B3), 5005-5017.
  • URL-1: International GNSS Service, http://mgex.igs.org/, (Erişim Tarihi:1 Nisan 2020).
  • URL-2: Web Based Trimble RTX Service, https://www.trimblertx.com/UploadForm.aspx, (Erişim Tarihi:1 Nisan 2020).
  • URL-3: Space Weather Archive, https://www.spaceweatherlive.com/en/archive, (Erişim Tarihi:3 Nisan 2020).

Investigation of the performance of the Multi-GNSS analysis with web based Trimble RTX service

Yıl 2021, Cilt: 8 Sayı: 1, 30 - 40, 01.05.2021
https://doi.org/10.9733/JGG.2021R0003.T

Öz

Nowadays, Global Navigation Satellite Systems (GNSS) data are used in most of the geodetic studies. Positioning information can be obtained by using GPS, GLONASS, Galileo and BeiDou in the structure of the GNSS. International GNSS Service (IGS) has initiated a project, called Multi-GNSS Experiment (MGEX), to collect, track and analyze different signals and satellite system data. Since, the Multi-GNSS solutions have started to use, positioning accuracy obtained from Multi-GNSS solutions is very important for users. Therefore, in this study, GNSS data of 10 stations were analyzed in 4 different scenarios as GPS, GPS/GLONASS, GPS/GLONASS/Galileo and GPS/GLONASS/Galileo/BeiDou. The GNSS data were processed using Trimble RTX service which is a web based precise point positioning (PPP) software that is capable of processing Multi-GNSS data. Results have demonstrated that, it has been shown that the higher positioning accuracy can be obtained using different satellite systems together, instead of using GPS-Only. Moreover, accuracy of Multi-GNSS solutions was investigated whether it depends on session duration and latitude or not. According to the results, it was emphasized that accuracy of Multi-GNSS solutions only depends on session duration.

Kaynakça

  • Albayrak, M., Erdoğan, B., & Erkaya, H. (2020). Performance analysis of web-based relative and precise point positioning techniques with different satellite visibility conditions. Boletim de Ciências Geodésicas, 26(1).
  • Bisnath, S., & Gao, Y. (2009). Current state of precise point positioning and future prospects and limitations. Observing our changing earth , s. 615-623. Springer, Berlin, Heidelberg.
  • Doucet, K., Herwig, M., Kipka, A., Kreikenbohm, P., Landau, H., Leandro, R., Moessmer, M., & Pagels, C. (2012). Introducing ambiguity resolution in webhosted global multi-GNSS precise positioning with Trimble RTX-PP. Proceedings of the 25th International Technical Meeting of The Satellite Division of the Institute of Navigation, 17, 1115-1125.
  • Eckl, M. C., Snay, R. A., Soler, T., Cline, M. W., & Mader, G. L. (2001). Accuracy of GPS-derived relative positions as a function of interstation distance and observing-session duration. Journal of geodesy, 75(12), 633-640.
  • Erdoğan, B., Kayacık, O., & Doğan, A.H. (2019). Hassas mutlak nokta konumlamada GIPSY-OASIS II v6.4 yazılımı ile elde edilen varyans kovaryans matrisinin güvenirliğinin araştırılması. Jeodezi ve Jeoinformasyon Dergisi , 6(2) , 75-86.
  • Erdoğan, B., & Doğan, A.H. (2019). Scaling of the variance covariance matrix obtained from Bernese software. Acta Geodaetica et Geophysica, 54(2), 197-211.
  • Gao, Y., & Shen, X. (2001). Improving ambiguity convergence in carrier phase-based precise point positioning. Proceedings of the 14th international technical meeting of the Satellite Division of the Institute of Navigation, 1532-1539.
  • Geng, J., Teferle, F. N., Meng, X., & Dodson, A. H. (2011). Towards PPP-RTK: Ambiguity resolution in real-time precise point positioning. Advances in space research, 47(10), 1664-1673.
  • Hampel, F. R., Ronchetti, E. M., Rousseeuw, P. J., & Stahel, W. A. (2011). Robust statistics: the approach based on influence functions. John Wiley & Sons.
  • Hekimoğlu, Ş. (2005). Do Robust Methods Identify Outliniers More Reliably Than Conventional Tests for Outliniers ?. ZfV magazine for geodesy, geoinformation and land management, 3, 174-180.
  • Koch, K.-R. (2013). Parameter estimation and hypothesis testing in linear models, Springer Science & Business Media.
  • Kouba, J., & Héroux, P. (2001). Precise point positioning using IGS orbit and clock products. GPS solutions, 5(2), 12-28.
  • Li, X., Ge, M., Dai, X., Ren, X., Fritsche, M., Wickert, J., & Schuh, H. (2015). Accuracy and reliability of multi-GNSS real-time precise positioning: GPS, GLONASS, BeiDou, and Galileo. Journal of Geodesy, 89(6), 607-635.
  • Montenbruck, O., Steigenberger, P., Prange, L., Deng, Z., Zhao, Q., Perosanz, F., Romero, I., Noll, C., Stürze, A., & Weber, G. (2017). The Multi-GNSS Experiment (MGEX) of the International GNSS Service (IGS)–achievements, prospects and challenges. Advances in Space Research, 59(7), 1671-1697.
  • Öcalan, T., Erdoğan, B., & Tunalıoğlu, N. (2013). Analysis of web-based online services for GPS relative and precise point positioning techniques. Boletim de ciencias geodesicas, 19(2), 191-207.
  • Öcalan T. (2015). GNSS Ağlarında GPS Hassas Nokta Konumlama (GPS-PPP) Tekniği Yaklaşımlı Çözümler (Doktora Tezi). Yıldız Teknik Üniversitesi, Fen Bilimleri Enstitüsü, İstanbul, Türkiye.
  • Öğütcü, S. (2019). The contribution of Multi-GNSS Experiment (MGEX) to precise point positioning over Turkey: Consideration of observation time and satellite geometry. El-Cezeri Journal of Science and Engineering, 6(3), 642-658.
  • Öğütcü, S. (2020). Assessing the contribution of Galileo to GPS+ GLONASS PPP: Towards full operational capability. Measurement, 151, 107143.
  • Rizos, C., Janssen, V., Roberts, C., & Grinter, T. (2012), Precise Point Positioning: Is the Era of Differential GNSS Positioning Drawing to an End? FIG Working Week 2012, Roma, İtalya.
  • Saraçoğlu, A., & Şanli, D. U. (2020). Effect of meteorological seasons on the accuracy of GPS positioning. Measurement, 152, 107301.
  • Soler, T., Michalak, P., Weston, N. D., Snay, R. A., & Foote, R. H. (2006). Accuracy of OPUS solutions for 1-to 4-h observing sessions. GPS solutions, 10(1), 45-55.
  • Soycan, M., & Öcalan, T. (2011). A regression study on relative GPS accuracy for different variables. Survey Review, 43(320), 137-149.
  • Şanlı, D. U., & Engin, C. (2009). Accuracy of GPS positioning over regional scales. Survey Review, 41(312), 192-200.
  • Şanlı, D. U., & Tekiç, S. (2010). Accuracy of GPS precise point positioning: A tool for GPS accuracy prediction. Lambert Acad. Publ.
  • Toluc, A. B. (2016). Multi-GNSS Precise Point Positioning Using GPS, GLONASS and Galileo (Yüksek Lisans Tezi). The Ohio State University, Graduate School of The Ohio State University, Ohio, Amerika Birleşik Devletleri.
  • Tut, İ., Şanlı, D. U., Erdoğan, B., & Hekimoğlu, Ş. (2013). Efficiency of BERNESE single baseline rapid static positioning solutions with search strategy. Survey review, 45(331), 296-304.
  • Wang, J., Wu, Z., Semmling, M., Zus, F., Gerland, S., Ramatschi, M., Ge, M., Wickert, J., & Schuh, H. (2019). Retrieving Precipitable Water Vapor From Shipborne Multi‐GNSS Observations. Geophysical Research Letters, 46(9), 5000-5008.
  • Wessel, P., & Smith, W. H. (1998). New, improved version of Generic Mapping Tools released. Eos, Transactions American Geophysical Union, 79(47), 579-579.
  • Xia, F., Ye, S., Xia, P., Zhao, L., Jiang, N., Chen, D., & Hu, G. (2019). Assessing the latest performance of Galileo-only PPP and the contribution of Galileo to Multi-GNSS PPP. Advances in space research, 63(9), 2784-2795.
  • Yapıcı, T. (2007). Influences of interplanetary magnetic field on the variability of aerospace media (Yüksek Lisans Tezi), Orta Doğu Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Ankara, Türkiye.
  • Zumberge, J. F., Heflin, M. B., Jefferson, D. C., Watkins, M. M., & Webb, F. H. (1997). Precise point positioning for the efficient and robust analysis of GPS data from large networks. Journal of geophysical research: solid earth, 102(B3), 5005-5017.
  • URL-1: International GNSS Service, http://mgex.igs.org/, (Erişim Tarihi:1 Nisan 2020).
  • URL-2: Web Based Trimble RTX Service, https://www.trimblertx.com/UploadForm.aspx, (Erişim Tarihi:1 Nisan 2020).
  • URL-3: Space Weather Archive, https://www.spaceweatherlive.com/en/archive, (Erişim Tarihi:3 Nisan 2020).
Toplam 34 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Araştırma Makalesi
Yazarlar

Gizem Sezer 0000-0002-4190-5776

Ali Hasan Doğan 0000-0002-8490-890X

Bahattin Erdoğan 0000-0002-8060-9208

Yayımlanma Tarihi 1 Mayıs 2021
Gönderilme Tarihi 6 Temmuz 2020
Yayımlandığı Sayı Yıl 2021 Cilt: 8 Sayı: 1

Kaynak Göster

APA Sezer, G., Doğan, A. H., & Erdoğan, B. (2021). Çoklu-GNSS çözümlerinin performansının internet tabanlı Trimble RTX servisi ile incelenmesi. Jeodezi Ve Jeoinformasyon Dergisi, 8(1), 30-40. https://doi.org/10.9733/JGG.2021R0003.T
AMA Sezer G, Doğan AH, Erdoğan B. Çoklu-GNSS çözümlerinin performansının internet tabanlı Trimble RTX servisi ile incelenmesi. hkmojjd. Mayıs 2021;8(1):30-40. doi:10.9733/JGG.2021R0003.T
Chicago Sezer, Gizem, Ali Hasan Doğan, ve Bahattin Erdoğan. “Çoklu-GNSS çözümlerinin performansının Internet Tabanlı Trimble RTX Servisi Ile Incelenmesi”. Jeodezi Ve Jeoinformasyon Dergisi 8, sy. 1 (Mayıs 2021): 30-40. https://doi.org/10.9733/JGG.2021R0003.T.
EndNote Sezer G, Doğan AH, Erdoğan B (01 Mayıs 2021) Çoklu-GNSS çözümlerinin performansının internet tabanlı Trimble RTX servisi ile incelenmesi. Jeodezi ve Jeoinformasyon Dergisi 8 1 30–40.
IEEE G. Sezer, A. H. Doğan, ve B. Erdoğan, “Çoklu-GNSS çözümlerinin performansının internet tabanlı Trimble RTX servisi ile incelenmesi”, hkmojjd, c. 8, sy. 1, ss. 30–40, 2021, doi: 10.9733/JGG.2021R0003.T.
ISNAD Sezer, Gizem vd. “Çoklu-GNSS çözümlerinin performansının Internet Tabanlı Trimble RTX Servisi Ile Incelenmesi”. Jeodezi ve Jeoinformasyon Dergisi 8/1 (Mayıs 2021), 30-40. https://doi.org/10.9733/JGG.2021R0003.T.
JAMA Sezer G, Doğan AH, Erdoğan B. Çoklu-GNSS çözümlerinin performansının internet tabanlı Trimble RTX servisi ile incelenmesi. hkmojjd. 2021;8:30–40.
MLA Sezer, Gizem vd. “Çoklu-GNSS çözümlerinin performansının Internet Tabanlı Trimble RTX Servisi Ile Incelenmesi”. Jeodezi Ve Jeoinformasyon Dergisi, c. 8, sy. 1, 2021, ss. 30-40, doi:10.9733/JGG.2021R0003.T.
Vancouver Sezer G, Doğan AH, Erdoğan B. Çoklu-GNSS çözümlerinin performansının internet tabanlı Trimble RTX servisi ile incelenmesi. hkmojjd. 2021;8(1):30-4.