İnceleme Makalesi
BibTex RIS Kaynak Göster

DOĞAL AFET RİSK ANALİZİNDE MAKİNE ÖĞRENME YÖNTEMLERİNİN KULLANIMI HAKKINDA BİR İNCELEME

Yıl 2024, Cilt: 21 Sayı: 54, 183 - 193

Öz

Doğanın dengesinin bozulması ile kasırgalar, seller, toprak kaymaları ve kuraklık ön görülemez bir şiddette ve zamanda yaşanmaktadır. İklim değişikliğine bağlı olarak artan bu doğal felaketler, insan sağlığı, ekonomi ve çevreye zarar vererek çok daha sık ve şiddetli biçimde yaşanmaktadır. Doğal afet boyutundaki meteorolojik olayların tahmini ve modellemesinin yanı sıra uydu tabanlı görüntüler üzerinden potansiyel tehlike kaynaklarının belirlenmesi ve risk senaryolarının oluşturulması ile ilgili çok sayıda çalışma yapılmaktadır. Yapay zekâ yöntemleri birçok disiplinden gelen veriyi anlamlandırarak çözüm üretebilmektedir. Kuraklığın izlenmesi, sel duyarlılık haritalamasının yapılması, toprak kayması riskinin takip edilmesi gibi doğa olayları, meteorolojik olarak sensorlar, simülasyonlar ya da gözlemlerden gelen zamansal ve mekânsal büyük veriyi analiz etmek için makine öğrenme ve derin öğrenme yöntemlerinden yararlanmak giderek daha çok ilgi gören bir araştırma alanı olmaktadır. Bu inceleme, doğal afet riskleri için çeşitli yapay zekâ uygulamaları hakkında bir literatür araştırması sağlamayı amaçlamaktadır. 2017-2022 yılları arasında yayınlanan kuraklık, sel ve toprak erozyonları odaklı makine öğrenme ve derin öğrenme yöntemleri tabanlı risk analiz modellerini kullanan araştırma makaleleri incelenmiştir. Araştırma sonucunda yapay zekâ tabanlı modellerin, doğal afetlerin tahmininde oldukça önemli bir role sahip olduğu sonucuna varılmıştır.

Etik Beyan

Bu çalışmada “Yükseköğretim Kurumları Bilimsel Araştırma ve Yayın Etiği Yönergesi” kapsamında uyulması belirtilen tüm kurallara uyulmuştur. Yönergenin ikinci bölümü olan “Bilimsel Araştırma ve Yayın Etiğine Aykırı Eylemler” başlığı altında belirtilen eylemlerden hiçbiri gerçekleştirilmemiştir.

Kaynakça

  • Ali, M., Deo, R. C., Downs, N. J. ve Maraseni, T. (2018). Multi-stage committee based extreme learning machine model incorporating the influence of climate parameters and seasonality on drought forecasting. Computers and electronics in agriculture, 152, 149-165.
  • Arabameri, A., Seyed Danesh, A., Santosh, M., Cerda, A., Chandra Pal, S., Ghorbanzadeh, O., Roy, P. ve Chowdhuri, I. (2022). Flood susceptibility mapping using meta-heuristic algorithms. Geomatics, Natural Hazards and Risk, 13(1), 949-974.
  • BBC. (2021). Ida Kasırgası: Louisiana'da 1 milyon kişi elektriksiz kaldı. https://www.bbc.com/turkce/haberler-dunya-58380293
  • Bui, Q.-T., Nguyen, Q.-H., Nguyen, X. L., Pham, V. D., Nguyen, H. D. ve Pham, V.-M. (2020). Verification of novel integrations of swarm intelligence algorithms into deep learning neural network for flood susceptibility mapping. Journal of Hydrology, 581, 124379.
  • Gianinetto, M., Aiello, M., Vezzoli, R., Polinelli, F. N., Rulli, M. C., Chiarelli, D. D., Bocchiola, D., Ravazzani, G. ve Soncini, A. (2020). Future Scenarios of Soil Erosion in the Alps under Climate Change and Land Cover Transformations Simulated with Automatic Machine Learning. Climate, 8(2), Article 28. https://doi.org/10.3390/cli8020028
  • Khan, N., Sachindra, D. A., Shahid, S., Ahmed, K., Shiru, M. S. ve Nawaz, N. (2020). Prediction of droughts over Pakistan using machine learning algorithms. Advances in Water Resources, 139, Article 103562. https://doi.org/10.1016/j.advwatres.2020.103562
  • Kumar, N., Poonia, V., Gupta, B. B. ve Goyal, M. K. (2021). A novel framework for risk assessment and resilience of critical infrastructure towards climate change. Technological Forecasting and Social Change, 165, Article 120532. https://doi.org/10.1016/j.techfore.2020.120532
  • LeCun, Y., Bengio, Y. ve Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-444.
  • Piao, Y., Lee, D., Park, S., Kim, H. G. ve Jin, Y. H. (2022). Multi-hazard mapping of droughts and forest fires using a multi-layer hazards approach with machine learning algorithms. Geomatics Natural Hazards & Risk, 13(1), 2649-2673. https://doi.org/10.1080/19475705.2022.2128440
  • Prasad, P., Loveson, V. J., Das, B. ve Kotha, M. (2022). Novel ensemble machine learning models in flood susceptibility mapping. Geocarto International, 37(16), 4571-4593.
  • Rolnick, D., Donti, P. L., Kaack, L. H., Kochanski, K., Lacoste, A., Sankaran, K., Ross, A. S., Milojevic-Dupont, N., Jaques, N. ve Waldman-Brown, A. (2022). Tackling climate change with machine learning. ACM Computing Surveys (CSUR), 55(2), 1-96.
  • Romeiko, X. X., Guo, Z. J., Pang, Y. L., Lee, E. K. ve Zhang, X. S. (2020). Comparing Machine Learning Approaches for Predicting Spatially Explicit Life Cycle Global Warming and Eutrophication Impacts from Corn Production. Sustainability, 12(4), Article 1481. https://doi.org/10.3390/su12041481
  • Şahin, Ü. (2020). İklim Politikalarında Yeni Dönem: Paris Anlaşması ve Hak Temelli Yaklaşım. Toplum ve Hekim, 35(1), 37-45.
  • Senanayake, S., Pradhan, B., Alamri, A. ve Park, H. J. (2022). A new application of deep neural network (LSTM) and RUSLE models in soil erosion prediction. Science of the Total Environment, 845, Article 157220. https://doi.org/10.1016/j.scitotenv.2022.157220
  • Shafizadeh-Moghadam, H., Valavi, R., Shahabi, H., Chapi, K. ve Shirzadi, A. (2018). Novel forecasting approaches using combination of machine learning and statistical models for flood susceptibility mapping. Journal of environmental management, 217, 1-11.
  • Shen, R., Guo, J., Zhang, J. ve Li, L. (2017). Construction of a drought monitoring model using the random forest based remote sensing. J. Geo-Inf. Sci, 19(1), 125-133.
  • Shen, R., Huang, A., Li, B. ve Guo, J. (2019). Construction of a drought monitoring model using deep learning based on multi-source remote sensing data. International Journal of Applied Earth Observation and Geoinformation, 79, 48-57.
  • WMO. (2022). State of the Global Climate 2021. https://library.wmo.int/doc_num.php?explnum_id=11178#:~:text=The%20global%20mean%20temperature%20in,seven%20warmest%20years%20on%20record.
  • Yu, Y., Si, X., Hu, C. ve Zhang, J. (2019). A review of recurrent neural networks: LSTM cells and network architectures. Neural computation, 31(7), 1235-1270.

A REVIEW ABOUT THE USE OF MACHINE LEARNING METHODS IN NATURAL DISASTER RISK ANALYSIS

Yıl 2024, Cilt: 21 Sayı: 54, 183 - 193

Öz

With the disruption of the balance of nature, hurricanes, floods, landslides, and droughts are occurring in unpredictable intensities and times. These natural disasters, which are increasing due to climate change, are causing more frequent and severe damage to human health, the economy, and the environment. Along with the prediction and modeling of meteorological events at the level of natural disasters, many studies are being conducted on the identification of potential hazard sources and the creation of risk scenarios based on satellite-based images. Artificial intelligence methods are able to generate solutions by understanding data from multiple disciplines. Monitoring drought,creating flood susceptibility maps, tracking landslide risks, and other natural events are becoming increasingly popular research areas that utilize machine learning and deep learning methods to analyze the temporal and spatial big data obtained from sensors, simulations, or observations. This study aims to provide a literature search on various artificial intelligence (AI) applications for natural disaster risks. Research articles that use machine learning and deep learning-based risk analysis models focused on drought, floods, and soil erosion, published between 2017-2022, were examined. As a result of the study, it was concluded that AI-based models play a crucial role in predicting natural disasters.

Kaynakça

  • Ali, M., Deo, R. C., Downs, N. J. ve Maraseni, T. (2018). Multi-stage committee based extreme learning machine model incorporating the influence of climate parameters and seasonality on drought forecasting. Computers and electronics in agriculture, 152, 149-165.
  • Arabameri, A., Seyed Danesh, A., Santosh, M., Cerda, A., Chandra Pal, S., Ghorbanzadeh, O., Roy, P. ve Chowdhuri, I. (2022). Flood susceptibility mapping using meta-heuristic algorithms. Geomatics, Natural Hazards and Risk, 13(1), 949-974.
  • BBC. (2021). Ida Kasırgası: Louisiana'da 1 milyon kişi elektriksiz kaldı. https://www.bbc.com/turkce/haberler-dunya-58380293
  • Bui, Q.-T., Nguyen, Q.-H., Nguyen, X. L., Pham, V. D., Nguyen, H. D. ve Pham, V.-M. (2020). Verification of novel integrations of swarm intelligence algorithms into deep learning neural network for flood susceptibility mapping. Journal of Hydrology, 581, 124379.
  • Gianinetto, M., Aiello, M., Vezzoli, R., Polinelli, F. N., Rulli, M. C., Chiarelli, D. D., Bocchiola, D., Ravazzani, G. ve Soncini, A. (2020). Future Scenarios of Soil Erosion in the Alps under Climate Change and Land Cover Transformations Simulated with Automatic Machine Learning. Climate, 8(2), Article 28. https://doi.org/10.3390/cli8020028
  • Khan, N., Sachindra, D. A., Shahid, S., Ahmed, K., Shiru, M. S. ve Nawaz, N. (2020). Prediction of droughts over Pakistan using machine learning algorithms. Advances in Water Resources, 139, Article 103562. https://doi.org/10.1016/j.advwatres.2020.103562
  • Kumar, N., Poonia, V., Gupta, B. B. ve Goyal, M. K. (2021). A novel framework for risk assessment and resilience of critical infrastructure towards climate change. Technological Forecasting and Social Change, 165, Article 120532. https://doi.org/10.1016/j.techfore.2020.120532
  • LeCun, Y., Bengio, Y. ve Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-444.
  • Piao, Y., Lee, D., Park, S., Kim, H. G. ve Jin, Y. H. (2022). Multi-hazard mapping of droughts and forest fires using a multi-layer hazards approach with machine learning algorithms. Geomatics Natural Hazards & Risk, 13(1), 2649-2673. https://doi.org/10.1080/19475705.2022.2128440
  • Prasad, P., Loveson, V. J., Das, B. ve Kotha, M. (2022). Novel ensemble machine learning models in flood susceptibility mapping. Geocarto International, 37(16), 4571-4593.
  • Rolnick, D., Donti, P. L., Kaack, L. H., Kochanski, K., Lacoste, A., Sankaran, K., Ross, A. S., Milojevic-Dupont, N., Jaques, N. ve Waldman-Brown, A. (2022). Tackling climate change with machine learning. ACM Computing Surveys (CSUR), 55(2), 1-96.
  • Romeiko, X. X., Guo, Z. J., Pang, Y. L., Lee, E. K. ve Zhang, X. S. (2020). Comparing Machine Learning Approaches for Predicting Spatially Explicit Life Cycle Global Warming and Eutrophication Impacts from Corn Production. Sustainability, 12(4), Article 1481. https://doi.org/10.3390/su12041481
  • Şahin, Ü. (2020). İklim Politikalarında Yeni Dönem: Paris Anlaşması ve Hak Temelli Yaklaşım. Toplum ve Hekim, 35(1), 37-45.
  • Senanayake, S., Pradhan, B., Alamri, A. ve Park, H. J. (2022). A new application of deep neural network (LSTM) and RUSLE models in soil erosion prediction. Science of the Total Environment, 845, Article 157220. https://doi.org/10.1016/j.scitotenv.2022.157220
  • Shafizadeh-Moghadam, H., Valavi, R., Shahabi, H., Chapi, K. ve Shirzadi, A. (2018). Novel forecasting approaches using combination of machine learning and statistical models for flood susceptibility mapping. Journal of environmental management, 217, 1-11.
  • Shen, R., Guo, J., Zhang, J. ve Li, L. (2017). Construction of a drought monitoring model using the random forest based remote sensing. J. Geo-Inf. Sci, 19(1), 125-133.
  • Shen, R., Huang, A., Li, B. ve Guo, J. (2019). Construction of a drought monitoring model using deep learning based on multi-source remote sensing data. International Journal of Applied Earth Observation and Geoinformation, 79, 48-57.
  • WMO. (2022). State of the Global Climate 2021. https://library.wmo.int/doc_num.php?explnum_id=11178#:~:text=The%20global%20mean%20temperature%20in,seven%20warmest%20years%20on%20record.
  • Yu, Y., Si, X., Hu, C. ve Zhang, J. (2019). A review of recurrent neural networks: LSTM cells and network architectures. Neural computation, 31(7), 1235-1270.
Toplam 19 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Bilim ve Teknoloji Sosyolojisi ve Sosyal Bilimler
Bölüm İnceleme Makalesi
Yazarlar

Tuba Parlar 0000-0002-8004-6150

Erken Görünüm Tarihi 25 Aralık 2024
Yayımlanma Tarihi
Gönderilme Tarihi 13 Nisan 2023
Yayımlandığı Sayı Yıl 2024 Cilt: 21 Sayı: 54

Kaynak Göster

APA Parlar, T. (2024). DOĞAL AFET RİSK ANALİZİNDE MAKİNE ÖĞRENME YÖNTEMLERİNİN KULLANIMI HAKKINDA BİR İNCELEME. Hatay Mustafa Kemal Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 21(54), 183-193.