Konferans Bildirisi
BibTex RIS Kaynak Göster
Yıl 2020, Cilt: 2 Sayı: 1, 1 - 8, 04.03.2020

Öz

Kaynakça

  • [1] Blaschke W., Heildelberger, S. B., Zur bewegungs geometrie auf der kugel”, Akad. Wiss. Math. Nat. Kl., 2, 1948.
  • [2] Hacısalihoğlu H.H., On closed spherical motion, Q. Appl. Math., 29, p:269-275, 1971.
  • [3] Müller H.R., Abhandl. Braun., Wiss. Ges. 31, 129-135, 1980.
  • [4] Karadağ, H. B., On Closed Spherical Curves and Jacobi Theorems, Ph.D. Thesis, İnönü University, Malatya, Turkey, 1994.
  • [5] Petrovic-Torgasev M. and Sucurovic E., Some characterizations of the Lorentzian spherical time-like and null curves, Mathematicki Vesnik, Vol.53, No:1-2, pp:21-27, 2001.
  • [6] O’Neil B., Semi-Reimannian Geometry, Academic Press, New York, London, 1983.
  • [7] Koru Yücekaya G., On areas of regions bounded by closed Lorentzian spherical curves, Int. J. Contemp. Math. Sci., Vol.2, No:11, pp:545-552, 2007.
  • [8] Özyılmaz, E., Yaylı, Y., O. Bonnet Integral Formula and Some Theorems in Minkowski Space, Hadronic Journal, Institute for Basic Research USA, Vol.15, No 4, pp:397-414, 2000.
  • [9] Koru Yücekaya G., On Lorentzian spherical areas in 3-dimensional Lorentzian space, II. Turkish World Mathematics Symposium, Sakarya, 4-7 Temmuz 2007.

RELATIONS BETWEEN AREAS OF LORENTZIAN SPHERICAL REGIONS

Yıl 2020, Cilt: 2 Sayı: 1, 1 - 8, 04.03.2020

Öz

In this study, during the one-parameter
closed spherical motion  in 3-dimensional
Lorentzian space , the unit time-like Steiner vector of the motion; the end
points of the orthonormal triad  of the K moving
Lorentzian sphere, where  are the space-like
vectors  and  is the time-like
vector, are expressed in terms of field vectors of the regions that are limited
by the spherical orbits on the fixed unit  Lorentzian sphere  during the
one-parameter closed spherical motion .



 



Furthermore, for one-parameter
closed spherical motion , relations and results between the areas obtained by field
vector,  of the spherical
region bounded by the closed spherical space-like curve (X) drawn by a fixed
point X, which selected from the moving Lorentzian sphere
 on the fixed unit Lorentzian
sphere K and in a closed spherical motion
; the
orthonormal vectors
, which selected in the moving unit Lorentzian sphere K, the spherical regions
of the end points on the sphere that the spherical orbits of the fixed unit
Lorentzian sphere are constrained.



 



In addition, the correlations and
results obtained were analyzed using the new expression of the unit time-like
Steiner vector of the motion and the same results were obtained.

Kaynakça

  • [1] Blaschke W., Heildelberger, S. B., Zur bewegungs geometrie auf der kugel”, Akad. Wiss. Math. Nat. Kl., 2, 1948.
  • [2] Hacısalihoğlu H.H., On closed spherical motion, Q. Appl. Math., 29, p:269-275, 1971.
  • [3] Müller H.R., Abhandl. Braun., Wiss. Ges. 31, 129-135, 1980.
  • [4] Karadağ, H. B., On Closed Spherical Curves and Jacobi Theorems, Ph.D. Thesis, İnönü University, Malatya, Turkey, 1994.
  • [5] Petrovic-Torgasev M. and Sucurovic E., Some characterizations of the Lorentzian spherical time-like and null curves, Mathematicki Vesnik, Vol.53, No:1-2, pp:21-27, 2001.
  • [6] O’Neil B., Semi-Reimannian Geometry, Academic Press, New York, London, 1983.
  • [7] Koru Yücekaya G., On areas of regions bounded by closed Lorentzian spherical curves, Int. J. Contemp. Math. Sci., Vol.2, No:11, pp:545-552, 2007.
  • [8] Özyılmaz, E., Yaylı, Y., O. Bonnet Integral Formula and Some Theorems in Minkowski Space, Hadronic Journal, Institute for Basic Research USA, Vol.15, No 4, pp:397-414, 2000.
  • [9] Koru Yücekaya G., On Lorentzian spherical areas in 3-dimensional Lorentzian space, II. Turkish World Mathematics Symposium, Sakarya, 4-7 Temmuz 2007.
Toplam 9 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Makaleler
Yazarlar

Gülay Koru Yücekaya

Yayımlanma Tarihi 4 Mart 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 2 Sayı: 1

Kaynak Göster

APA Koru Yücekaya, G. (2020). RELATIONS BETWEEN AREAS OF LORENTZIAN SPHERICAL REGIONS. Hagia Sophia Journal of Geometry, 2(1), 1-8.