Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2021, Cilt: 3 Sayı: 1, 16 - 22, 30.08.2021

Öz

Kaynakça

  • Arslan, K., Murathan C. & Özgür C. (2000). On contact manifolds satisfying certain curvature conditions. An. Univ. Bucuresti Math., 49(2), 17-26.
  • Atçeken, M. (2014). On generalized Sasakian space forms satisfying certain conditions on the concircular curvature tensor. Bull. Math. Anal. Appl., 6(1), 1-8.
  • Atçeken, M. & Uygun P. (2020). Characterizations for totally geodesic submanifolds of (k;m)-paracontact metric manifolds. Korean J. Math., 28(3), 555-571.
  • Calvaruso, G. (2011). Homogeneous paracontact metric three-manifolds, Illinois Journal of Mathematics, 55(2), 697-718.
  • Cappelletti-Montano, B., Küpeli Erken, I. & Murathan C. (2012). Nullity conditions in paracontact geometry. Differential Geom. Appl., 30(6), 665-693.
  • Kaneyuki, S., Williams, F. L. (1985). Almost paracontact and parahodge structures on manifolds. Nagoya Mathematical Journal, 99, 173-187.
  • Kowalczyk, D. (2001). On some subclass of semisymmetric manifolds. Soochow J. Math., 27(4), 445-462.
  • Mirzoyan, V. A. (1992). Structure theorems on Riemannian Ricci semisymmetric spaces (Russian), Izv. Vyssh. Uchebn. Zaved. Mat., 6, 80-89.
  • Szabo, Z. I. (1982). Structure theorems on Riemannian spaces satisfying R(X;Y):R = 0;. I. The local version. Journal of Differential Geometry, 17(4), 531-582.
  • Takahashi, T. (1977). Sasakian $\varphi$-symmetric spaces. Tohoku Math. J., 29(1), 91-113.
  • Kon, M., & Yano, K. (1985). Structures on manifolds (Vol. 3). World scientific.
  • Uygun P. & Atçeken M. (2021). On $(k,\mu )$-paracontact metric spaces satisfying some conditions on the $W_{0}^{\star }-$curvature tensor. NTMSCI, 9(2), 26-37.
  • Yıldırım, Ü ., Atçeken, M. & Dirik, S. (2019). A normal paracontact metric manifold satisfying some conditions on the $M$-projective curvature tensor. Konuralp Journal of Mathematics, 7(1), 217-221.
  • Yıldırım, Ü ., Atçeken, M. & Dirik, S. (2019). Pseudo projective curvature tensor satisfying some properties on a normal paracontact metric manifold. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 68(1), 997-1006.
  • Zamkovoy S. (2009). Canonical connections on paracontact manifolds. Ann. Global Anal. Geom., 36(1), 37-60.
  • Zamkovoy S. & Tzanov V. (2011). Non-existence of flat paracontact metric structures in dimension greater than or equal to five. Annuaire Univ. Sofia Fac. Math. Inform., 100, 27-34.

On the Geometry $(k,\mu )$-Paracontact Metric Manifold Satisfying Certain Curvature Conditions

Yıl 2021, Cilt: 3 Sayı: 1, 16 - 22, 30.08.2021

Öz

In the present paper, we have studied the curvature tensors of (k,μμ)-paracontact metric manifold satisfying the conditions ˜Z(X,Y)R=0Z~(X,Y)⋅R=0, ˜ZZ~, \ R(X,Y)˜Z=0R(X,Y)⋅Z~=0  and $R(X,Y)\cdot R=0$. According the cases, we have classified (k,μk,μ)-paracontact metric manifolds.

Kaynakça

  • Arslan, K., Murathan C. & Özgür C. (2000). On contact manifolds satisfying certain curvature conditions. An. Univ. Bucuresti Math., 49(2), 17-26.
  • Atçeken, M. (2014). On generalized Sasakian space forms satisfying certain conditions on the concircular curvature tensor. Bull. Math. Anal. Appl., 6(1), 1-8.
  • Atçeken, M. & Uygun P. (2020). Characterizations for totally geodesic submanifolds of (k;m)-paracontact metric manifolds. Korean J. Math., 28(3), 555-571.
  • Calvaruso, G. (2011). Homogeneous paracontact metric three-manifolds, Illinois Journal of Mathematics, 55(2), 697-718.
  • Cappelletti-Montano, B., Küpeli Erken, I. & Murathan C. (2012). Nullity conditions in paracontact geometry. Differential Geom. Appl., 30(6), 665-693.
  • Kaneyuki, S., Williams, F. L. (1985). Almost paracontact and parahodge structures on manifolds. Nagoya Mathematical Journal, 99, 173-187.
  • Kowalczyk, D. (2001). On some subclass of semisymmetric manifolds. Soochow J. Math., 27(4), 445-462.
  • Mirzoyan, V. A. (1992). Structure theorems on Riemannian Ricci semisymmetric spaces (Russian), Izv. Vyssh. Uchebn. Zaved. Mat., 6, 80-89.
  • Szabo, Z. I. (1982). Structure theorems on Riemannian spaces satisfying R(X;Y):R = 0;. I. The local version. Journal of Differential Geometry, 17(4), 531-582.
  • Takahashi, T. (1977). Sasakian $\varphi$-symmetric spaces. Tohoku Math. J., 29(1), 91-113.
  • Kon, M., & Yano, K. (1985). Structures on manifolds (Vol. 3). World scientific.
  • Uygun P. & Atçeken M. (2021). On $(k,\mu )$-paracontact metric spaces satisfying some conditions on the $W_{0}^{\star }-$curvature tensor. NTMSCI, 9(2), 26-37.
  • Yıldırım, Ü ., Atçeken, M. & Dirik, S. (2019). A normal paracontact metric manifold satisfying some conditions on the $M$-projective curvature tensor. Konuralp Journal of Mathematics, 7(1), 217-221.
  • Yıldırım, Ü ., Atçeken, M. & Dirik, S. (2019). Pseudo projective curvature tensor satisfying some properties on a normal paracontact metric manifold. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 68(1), 997-1006.
  • Zamkovoy S. (2009). Canonical connections on paracontact manifolds. Ann. Global Anal. Geom., 36(1), 37-60.
  • Zamkovoy S. & Tzanov V. (2011). Non-existence of flat paracontact metric structures in dimension greater than or equal to five. Annuaire Univ. Sofia Fac. Math. Inform., 100, 27-34.
Toplam 16 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Makaleler
Yazarlar

Pakize Uygun

Mehmet Atçeken Bu kişi benim 0000-0002-1242-4359

Yayımlanma Tarihi 30 Ağustos 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 3 Sayı: 1

Kaynak Göster

APA Uygun, P., & Atçeken, M. (2021). On the Geometry $(k,\mu )$-Paracontact Metric Manifold Satisfying Certain Curvature Conditions. Hagia Sophia Journal of Geometry, 3(1), 16-22.