New aspects of weaving K-frames: the excess and duality
Year 2024,
, 652 - 666, 27.06.2024
Elahe Agheshteh Moghaddam
Ali Akbar Arefijamaal
Abstract
Weaving frames in separable Hilbert spaces have been recently introduced by Bemrose et al. to deal with some problems in distributed signal processing and wireless sensor networks. Likewise weaving K -frames have been proved to be useful during signal reconstructions from the range of a bounded linear operator K. In this paper, we study the notion of weaving and its connection to the duality of K-frames and construct several pairs of woven K-frames. Also, we find a unique biorthogonal sequence for every K-Riesz basis and obtain a $K^*$-frame which is woven by its canonical dual. Moreover, we describe the excess for K-frames and prove that any two woven K-frames in a separable Hilbert space have the same excess. Finally, we introduce the necessary and sufficient condition under which a K-frame and its image under an invertible operator have the same excess.
References
- [1] E. Agheshteh Moghadam and A. Arefijamaal, On Excesses and Duality in Woven
Frames, Bull. Malays. Math. Sci. Soc. 44 (5), 3361–3375, 2021.
- [2] A. Aldroubi, Portraits of Frames, Proc. Amer. Math. Soc. 123 (1), 1661–1668, 1995.
- [3] F. Arabyani Neyshaburi and A. Arefijamaal, Manufactoring Pairs of Woven Frames
Applying Duality Principle on Hilbert Spaces, Bull. Malays. Math. Sci. Soc. 44 (1),
147–161, 2020.
- [4] F. Arabyani Neyshaburi and A. Arefijamaal, Some construction of K-frames and their
duals, Rocky Mt. J. Math. 47 (6), 1749–1764, 2017.
- [5] A. Arefijamaal and E. Zekaee, Image Processing by Alternate Dual Gabor Frames,
Bull. Iranian Math. Soc. 42 (6), 1305–1314, 2016.
- [6] A. Arefijamaal and E. Zekaee, Signal Processing by Alternate Dual Gabor Frames,
Appl. Comput. Harmon. Anal. 35, 535–540, 2013.
- [7] A. Bhandari, D. Borah and S. Mukherjee, Characterizations of Weaving K-frames,
Proc. Japan Acad. Ser. A Math. Sci. 96 (5), 39–43, 2020.
- [8] D. Bakic, T. Beric, On excesses of frames, Glas. Mat. Ser. III 50 (2), 415–427, 2015.
- [9] P. Balazs and K. Gröchenig. A guide to localized frames and applications to galerkinlike
representations of operators. In I. Pesenson, H. Mhaskar, A. Mayeli, Q. T. L.
Gia, and D.-X. Zhou, editors, Novel methods in harmonic analysis with applications to numerical analysis and data processing, Applied and Numerical Harmonic Analysis
series (ANHA). Birkhauser/Springer, 2017.
- [10] P. Balazs, M. Shamsabadi, A. Arefijamaal, and A. Rahimi, U-cross Gram matrices
and their invertibility, J. Math. Anal. Appl. 476 (2), 367–390, 2019.
- [11] T. Bemrose, P. G. Casazza, K. Grochenig,M. C. Lammers and R. G Lynch, Weaving
frames, Oper. Matrices 10 (4), 1093–1116, 2016.
- [12] H. Boleskel,F. Hlawatsch and H. G. Feichtinger , Frame Theoretic Analysis of Oversampled
Filter Banks, IEEE Trans. Signal Process 46, 3256–3268, 1998.
- [13] P. G. Casazza and G. Kutyniok, Frames of Subspaces, Contempt. Math. 345, 87–113,
2004.
- [14] P. G. Casazza, The art of Frame Theory, Taiwanese J. Math. 4 (2), 129–202, 2000.
- [15] O. Christensen, Frames and Bases: An Introductory Course, Birkhäuser, Boston,
2008.
- [16] N. Cotfas and J. P. Gazeau. Finite tight frames and some applications, J. Phys. A:
Math. Theor. 43 (19), 193001, 2010.
- [17] Deepshikha and Lalit K. Vashisht, Weaving K-Frames in Hilbert spaces, Results
Math. 27, 73–81, 2018 .
- [18] R. Duffin and A. Schaeffer, A Class of Nonharmonic Fourier Series, Trans. Amer.
Math. Soc. 72, 341–366, 1952.
- [19] Y.C. Eldar, O. Christensen, A characterization of oblique dual frame Pairs,
EURASIP J. Adv. Sig. Proc. 1–11, 2006.
- [20] S. Garg and L.K. Vashisht, Weaving K-Fusion Frames in Hilbert Spaces, Ganita 67
(1), 41–52, 2017.
- [21] L. Gˇavruta, Frames for Operators, Appl. Comp. Harmon. Anal. Appl. 32, 139–144,
2012.
- [22] J.R. Holub, Pre-Frames Operators, Besselian Frames and near-Riesz Bases in Hilbert
Spaces, Amer. Math. Soc. 122, 779–785, 1994.
- [23] Gh. Rahimlou, Weaving continuous K-frames in Hilbert spaces, Probl. Anal. Issues
Anal. 11(29), 91-105, 2022.
- [24] G. Ramu and P. Sam Johnson, Frame Operator of K-frames, SeMA. J. 37 (2),
171-181, 2016.
- [25] M. Shamsabadi and A. Arefijamaal, Some results of K-Frames and their multipliers,
Turk. J. Math. 44, 538–552, 2020.
- [26] M. Shamsabadi and A. A. Arefijamaal. Some results on U-cross Gram matrices by
using K-frames, Afrika Matematika 31, 1349–1358, 2020.
- [27] Zhong-Qi Xiang, Some New Results of Weaving K-Frames in Hilbert Spaces, Numer.
Funct. Anal. Optim. 42 (4), 1-23, 2021.
- [28] X. Xiao, Y. Zhu and L. Gˇavruta, Some Properties of K-Frames in Hilbert spaces,
Results. Math. 63, 1243–1255, 2013.
- [29] X. Xiao, K. Yan, G. Zhao, et al. Tight K-frames and weaving of K-frames, J. Pseudo-
Differ. Oper. Appl. 12, 1–14, 2021.
Year 2024,
, 652 - 666, 27.06.2024
Elahe Agheshteh Moghaddam
Ali Akbar Arefijamaal
References
- [1] E. Agheshteh Moghadam and A. Arefijamaal, On Excesses and Duality in Woven
Frames, Bull. Malays. Math. Sci. Soc. 44 (5), 3361–3375, 2021.
- [2] A. Aldroubi, Portraits of Frames, Proc. Amer. Math. Soc. 123 (1), 1661–1668, 1995.
- [3] F. Arabyani Neyshaburi and A. Arefijamaal, Manufactoring Pairs of Woven Frames
Applying Duality Principle on Hilbert Spaces, Bull. Malays. Math. Sci. Soc. 44 (1),
147–161, 2020.
- [4] F. Arabyani Neyshaburi and A. Arefijamaal, Some construction of K-frames and their
duals, Rocky Mt. J. Math. 47 (6), 1749–1764, 2017.
- [5] A. Arefijamaal and E. Zekaee, Image Processing by Alternate Dual Gabor Frames,
Bull. Iranian Math. Soc. 42 (6), 1305–1314, 2016.
- [6] A. Arefijamaal and E. Zekaee, Signal Processing by Alternate Dual Gabor Frames,
Appl. Comput. Harmon. Anal. 35, 535–540, 2013.
- [7] A. Bhandari, D. Borah and S. Mukherjee, Characterizations of Weaving K-frames,
Proc. Japan Acad. Ser. A Math. Sci. 96 (5), 39–43, 2020.
- [8] D. Bakic, T. Beric, On excesses of frames, Glas. Mat. Ser. III 50 (2), 415–427, 2015.
- [9] P. Balazs and K. Gröchenig. A guide to localized frames and applications to galerkinlike
representations of operators. In I. Pesenson, H. Mhaskar, A. Mayeli, Q. T. L.
Gia, and D.-X. Zhou, editors, Novel methods in harmonic analysis with applications to numerical analysis and data processing, Applied and Numerical Harmonic Analysis
series (ANHA). Birkhauser/Springer, 2017.
- [10] P. Balazs, M. Shamsabadi, A. Arefijamaal, and A. Rahimi, U-cross Gram matrices
and their invertibility, J. Math. Anal. Appl. 476 (2), 367–390, 2019.
- [11] T. Bemrose, P. G. Casazza, K. Grochenig,M. C. Lammers and R. G Lynch, Weaving
frames, Oper. Matrices 10 (4), 1093–1116, 2016.
- [12] H. Boleskel,F. Hlawatsch and H. G. Feichtinger , Frame Theoretic Analysis of Oversampled
Filter Banks, IEEE Trans. Signal Process 46, 3256–3268, 1998.
- [13] P. G. Casazza and G. Kutyniok, Frames of Subspaces, Contempt. Math. 345, 87–113,
2004.
- [14] P. G. Casazza, The art of Frame Theory, Taiwanese J. Math. 4 (2), 129–202, 2000.
- [15] O. Christensen, Frames and Bases: An Introductory Course, Birkhäuser, Boston,
2008.
- [16] N. Cotfas and J. P. Gazeau. Finite tight frames and some applications, J. Phys. A:
Math. Theor. 43 (19), 193001, 2010.
- [17] Deepshikha and Lalit K. Vashisht, Weaving K-Frames in Hilbert spaces, Results
Math. 27, 73–81, 2018 .
- [18] R. Duffin and A. Schaeffer, A Class of Nonharmonic Fourier Series, Trans. Amer.
Math. Soc. 72, 341–366, 1952.
- [19] Y.C. Eldar, O. Christensen, A characterization of oblique dual frame Pairs,
EURASIP J. Adv. Sig. Proc. 1–11, 2006.
- [20] S. Garg and L.K. Vashisht, Weaving K-Fusion Frames in Hilbert Spaces, Ganita 67
(1), 41–52, 2017.
- [21] L. Gˇavruta, Frames for Operators, Appl. Comp. Harmon. Anal. Appl. 32, 139–144,
2012.
- [22] J.R. Holub, Pre-Frames Operators, Besselian Frames and near-Riesz Bases in Hilbert
Spaces, Amer. Math. Soc. 122, 779–785, 1994.
- [23] Gh. Rahimlou, Weaving continuous K-frames in Hilbert spaces, Probl. Anal. Issues
Anal. 11(29), 91-105, 2022.
- [24] G. Ramu and P. Sam Johnson, Frame Operator of K-frames, SeMA. J. 37 (2),
171-181, 2016.
- [25] M. Shamsabadi and A. Arefijamaal, Some results of K-Frames and their multipliers,
Turk. J. Math. 44, 538–552, 2020.
- [26] M. Shamsabadi and A. A. Arefijamaal. Some results on U-cross Gram matrices by
using K-frames, Afrika Matematika 31, 1349–1358, 2020.
- [27] Zhong-Qi Xiang, Some New Results of Weaving K-Frames in Hilbert Spaces, Numer.
Funct. Anal. Optim. 42 (4), 1-23, 2021.
- [28] X. Xiao, Y. Zhu and L. Gˇavruta, Some Properties of K-Frames in Hilbert spaces,
Results. Math. 63, 1243–1255, 2013.
- [29] X. Xiao, K. Yan, G. Zhao, et al. Tight K-frames and weaving of K-frames, J. Pseudo-
Differ. Oper. Appl. 12, 1–14, 2021.