Research Article
BibTex RIS Cite

Non-informative Bayesian estimation in dispersion models

Year 2024, , 251 - 268, 29.02.2024
https://doi.org/10.15672/hujms.1053432

Abstract

The estimation of parameters for a distribution function is a significant and prominent field within statistical inference. This particular problem holds great relevance in various domains, including industries, stock markets, image processing, and reliability studies. There are two recognized approaches to estimation: point estimation and interval estimation, also known as confidence intervals. In this study, our primary focus lies in the point estimation of parameters associated with an exponential dispersion distribution function. In this process, we consider one of the parameters as a random variable that requires estimation. To tackle this, we adopt a Bayesian inference approach utilizing a one-parameter dispersion distribution. We explore non-informative priors, such as uniform and Jeffrey's priors, and provide evidence of the effectiveness of our method through simulation studies.

References

  • [1] J.M. Bernardo and A.F.M. Smith, Bayesian Theory, Wiley, 1994.
  • [2] J. Bertrand, P. Bertrand and J.P. Ovarlez, The Transforms and Applications Handbook, CRC & IEEE Presses, 2000.
  • [3] G.E. Box and G.C. Tiao, Bayesian Inference in Statistical Analysis, John Wiley & Sons, 2011.
  • [4] S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press, 2004.
  • [5] G.S. Datta and M. Ghosh, Some remarks on noninformative priors, J. Amer. Statist. Assoc. 90 (432), 1357-1363, 1995.
  • [6] D.M. Eaves, On Bayesian nonlinear regression with an enzyme example, Biometrika 70 (2), 373-379, 1983.
  • [7] K. Fatima and S.P. Ahmad, Bayesian approach in estimation of shape parameter of the exponentiated moment exponential distribution, J. Stat. Theory Appl. 17 (2), 359-374, 2018.
  • [8] C.W. Garvan and M. Ghosh, On the property of posteriors for dispersion models, J. Statist. Plann. Inference 78 (1-2), 229-241, 1999.
  • [9] A. Gelman and J. Hill, Data Analysis using Regression and Multilevel/Hierarchical Models, Cambridge University Press, 2007.
  • [10] C.B. Guure, N.A. Ibrahim and M.B. Adam, Bayesian inference of the Weibull model based on interval-censored survival data, Comput. Math. Methods Med., Doi: 10.1155/2013/849520, 2013.
  • [11] J.A. Hartigan, Locally uniform prior distributions, Ann. Statist. 24 (1), 160-173, 1996.
  • [12] N.T. Hobbs and M.B. Hooten, Bayesian Models: A Statistical Primer for Ecologists, Princeton University Press, 2015.
  • [13] J.G. Ibrahim and P.W. Laud, On Bayesian analysis of generalized linear models using Jeffreys’s prior, J. Amer. Statist. Assoc. 86 (416), 981-986, 1991.
  • [14] H. Jeffreys, Theory of Probability, 3rd ed., Oxford University Press, 1961.
  • [15] B. Jorgensen, Exponential dispersion models, J. R. Stat. Soc. Ser. B. Stat. Methodol. 49 (2), 127-145, 1987.
  • [16] B. Jorgensen, The Theory of Dispersion Models, CRC Press, 1997.
  • [17] B. Jorgensen, J.R. Martinez and M. Tsao, Asymptotic behaviour of the variance function, Scand. J. Stat. 21 (3), 223-243, 1994.
  • [18] R. Kaas, M. Goovaerts, J. Dhaene and M. Denuit, Modern Actuarial Risk Theory, Springer, 2008.
  • [19] A.A. Khan, M. Aslam, Z. Hussain and M. Tahir, Comparison of loss functions for estimating the scale parameter of log-Normal distribution using non-informative priors, Hacet. J. Math. Stat. 45 (6), 1831-1845, 2015.
  • [20] N.P. Lemoine, Moving beyond noninformative priors: Why and how to choose weakly informative priors in Bayesian analyses, Oikos 128 (7), 912-928, 2019.
  • [21] P. McCullagh and J.A. Nelder, Generalized Linear Models, 2nd ed., Chapman & Hall, 1989.
  • [22] M.D. Nichols and W.J. Padgett, A bootstrap control chart for Weibull percentiles, Qual. Reliab. Eng. Int. 22 (2), 141-151, 2006.
  • [23] I. Sadok and A. Masmoudi, New parametrization of stochastic volatility models, Comm. Statist. Theory Methods 51 (7), 1936-1953, 2022.
  • [24] I. Sadok, A. Masmoudi and M. Zribi, Integrating the EM algorithm with particle filter for image restoration with exponential dispersion noise, Comm. Statist. Theory Methods 52 (2), 446-462, 2023.
  • [25] I. Sadok and M. Zribi, Image restoration using Weibull particle filters, 4th International Conference on Pattern Analysis and Intelligent Systems (PAIS), 12-13 October 2022, Algeria, 2022.
  • [26] S.K. Sinha, Bayes estimation of the reliability function and hazard rate of a Weibull failure time distribution, Trabajos de Estadistica 1 (2), 47-56, 1986.
Year 2024, , 251 - 268, 29.02.2024
https://doi.org/10.15672/hujms.1053432

Abstract

References

  • [1] J.M. Bernardo and A.F.M. Smith, Bayesian Theory, Wiley, 1994.
  • [2] J. Bertrand, P. Bertrand and J.P. Ovarlez, The Transforms and Applications Handbook, CRC & IEEE Presses, 2000.
  • [3] G.E. Box and G.C. Tiao, Bayesian Inference in Statistical Analysis, John Wiley & Sons, 2011.
  • [4] S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press, 2004.
  • [5] G.S. Datta and M. Ghosh, Some remarks on noninformative priors, J. Amer. Statist. Assoc. 90 (432), 1357-1363, 1995.
  • [6] D.M. Eaves, On Bayesian nonlinear regression with an enzyme example, Biometrika 70 (2), 373-379, 1983.
  • [7] K. Fatima and S.P. Ahmad, Bayesian approach in estimation of shape parameter of the exponentiated moment exponential distribution, J. Stat. Theory Appl. 17 (2), 359-374, 2018.
  • [8] C.W. Garvan and M. Ghosh, On the property of posteriors for dispersion models, J. Statist. Plann. Inference 78 (1-2), 229-241, 1999.
  • [9] A. Gelman and J. Hill, Data Analysis using Regression and Multilevel/Hierarchical Models, Cambridge University Press, 2007.
  • [10] C.B. Guure, N.A. Ibrahim and M.B. Adam, Bayesian inference of the Weibull model based on interval-censored survival data, Comput. Math. Methods Med., Doi: 10.1155/2013/849520, 2013.
  • [11] J.A. Hartigan, Locally uniform prior distributions, Ann. Statist. 24 (1), 160-173, 1996.
  • [12] N.T. Hobbs and M.B. Hooten, Bayesian Models: A Statistical Primer for Ecologists, Princeton University Press, 2015.
  • [13] J.G. Ibrahim and P.W. Laud, On Bayesian analysis of generalized linear models using Jeffreys’s prior, J. Amer. Statist. Assoc. 86 (416), 981-986, 1991.
  • [14] H. Jeffreys, Theory of Probability, 3rd ed., Oxford University Press, 1961.
  • [15] B. Jorgensen, Exponential dispersion models, J. R. Stat. Soc. Ser. B. Stat. Methodol. 49 (2), 127-145, 1987.
  • [16] B. Jorgensen, The Theory of Dispersion Models, CRC Press, 1997.
  • [17] B. Jorgensen, J.R. Martinez and M. Tsao, Asymptotic behaviour of the variance function, Scand. J. Stat. 21 (3), 223-243, 1994.
  • [18] R. Kaas, M. Goovaerts, J. Dhaene and M. Denuit, Modern Actuarial Risk Theory, Springer, 2008.
  • [19] A.A. Khan, M. Aslam, Z. Hussain and M. Tahir, Comparison of loss functions for estimating the scale parameter of log-Normal distribution using non-informative priors, Hacet. J. Math. Stat. 45 (6), 1831-1845, 2015.
  • [20] N.P. Lemoine, Moving beyond noninformative priors: Why and how to choose weakly informative priors in Bayesian analyses, Oikos 128 (7), 912-928, 2019.
  • [21] P. McCullagh and J.A. Nelder, Generalized Linear Models, 2nd ed., Chapman & Hall, 1989.
  • [22] M.D. Nichols and W.J. Padgett, A bootstrap control chart for Weibull percentiles, Qual. Reliab. Eng. Int. 22 (2), 141-151, 2006.
  • [23] I. Sadok and A. Masmoudi, New parametrization of stochastic volatility models, Comm. Statist. Theory Methods 51 (7), 1936-1953, 2022.
  • [24] I. Sadok, A. Masmoudi and M. Zribi, Integrating the EM algorithm with particle filter for image restoration with exponential dispersion noise, Comm. Statist. Theory Methods 52 (2), 446-462, 2023.
  • [25] I. Sadok and M. Zribi, Image restoration using Weibull particle filters, 4th International Conference on Pattern Analysis and Intelligent Systems (PAIS), 12-13 October 2022, Algeria, 2022.
  • [26] S.K. Sinha, Bayes estimation of the reliability function and hazard rate of a Weibull failure time distribution, Trabajos de Estadistica 1 (2), 47-56, 1986.
There are 26 citations in total.

Details

Primary Language English
Subjects Statistics
Journal Section Statistics
Authors

Ibrahim Sadok 0000-0002-5366-5853

Mourad Zribi This is me 0000-0002-2622-901X

Afif Masmoudi This is me 0000-0003-1665-5354

Early Pub Date October 15, 2023
Publication Date February 29, 2024
Published in Issue Year 2024

Cite

APA Sadok, I., Zribi, M., & Masmoudi, A. (2024). Non-informative Bayesian estimation in dispersion models. Hacettepe Journal of Mathematics and Statistics, 53(1), 251-268. https://doi.org/10.15672/hujms.1053432
AMA Sadok I, Zribi M, Masmoudi A. Non-informative Bayesian estimation in dispersion models. Hacettepe Journal of Mathematics and Statistics. February 2024;53(1):251-268. doi:10.15672/hujms.1053432
Chicago Sadok, Ibrahim, Mourad Zribi, and Afif Masmoudi. “Non-Informative Bayesian Estimation in Dispersion Models”. Hacettepe Journal of Mathematics and Statistics 53, no. 1 (February 2024): 251-68. https://doi.org/10.15672/hujms.1053432.
EndNote Sadok I, Zribi M, Masmoudi A (February 1, 2024) Non-informative Bayesian estimation in dispersion models. Hacettepe Journal of Mathematics and Statistics 53 1 251–268.
IEEE I. Sadok, M. Zribi, and A. Masmoudi, “Non-informative Bayesian estimation in dispersion models”, Hacettepe Journal of Mathematics and Statistics, vol. 53, no. 1, pp. 251–268, 2024, doi: 10.15672/hujms.1053432.
ISNAD Sadok, Ibrahim et al. “Non-Informative Bayesian Estimation in Dispersion Models”. Hacettepe Journal of Mathematics and Statistics 53/1 (February 2024), 251-268. https://doi.org/10.15672/hujms.1053432.
JAMA Sadok I, Zribi M, Masmoudi A. Non-informative Bayesian estimation in dispersion models. Hacettepe Journal of Mathematics and Statistics. 2024;53:251–268.
MLA Sadok, Ibrahim et al. “Non-Informative Bayesian Estimation in Dispersion Models”. Hacettepe Journal of Mathematics and Statistics, vol. 53, no. 1, 2024, pp. 251-68, doi:10.15672/hujms.1053432.
Vancouver Sadok I, Zribi M, Masmoudi A. Non-informative Bayesian estimation in dispersion models. Hacettepe Journal of Mathematics and Statistics. 2024;53(1):251-68.