Research Article
BibTex RIS Cite
Year 2023, , 923 - 930, 15.08.2023
https://doi.org/10.15672/hujms.1076176

Abstract

References

  • [1] M. Bohner, S. R. Grace and N. Sultana, Asymptotic behavior of nonoscillatory solutions of higher-order integro-dynamic equations, Opuscula Math. 34, 5–14, 2014.
  • [2] E. Brestovanská and M. Medveď, Asymptotic behavior of solutions to second-order differential equations with fractional derivative perturbations, Electron. J. Differ. Eq. 2014 (201), 1–10, 2014.
  • [3] B. C. Dhage, A. V. Deshmukh and J. R. Graef, On asymptotic behavior of a nonlinear functional integral equation, Commun. Appl. Nonlinear Anal. 15, 55–67, 2008.
  • [4] S. R. Grace, J. R. Graef, S. Panigrahi and E. Tunç, On the oscillatory behavior of Volterra integral equations on time-scales, PanAmer. Math. J. 23, 35–41, 2013.
  • [5] S. R. Grace, J. R. Graef and E. Tunç, Asymptotic behavior of solutions of certain integro-differential equations, PanAmer. Math. J. 29, 45–60, 2019.
  • [6] S. R. Grace, J. R. Graef and E. Tunç, On the asymptotic behavior of solutions of certain integro-differential equations, J. Appl. Anal. Comput. 9, 1305–1318, 2019.
  • [7] S. R. Grace, J. R. Graef and A. Zafer, Oscillation of integro-dynamic equations on time scales, Appl. Math. Lett. 26, 383–386, 2013.
  • [8] S. R. Grace and A. Zafer, Oscillatory behavior of integro-dynamic and integral equations on time scales, Appl. Math. Lett. 28, 47–52, 2014.
  • [9] J. R. Graef and S. R. Grace, On the asymptotic behavior of solutions of certain forced third order integro-differential equations with d-Laplacian, Appl. Math. Lett. 83, 40– 45, 2018.
  • [10] J. R. Graef, S. R. Grace and E. Tunç, On the oscillation of certain integral equations, Publ. Math. Debrecen 90, 195–204, 2017.
  • [11] J. R. Graef and C. Tunç, Continuability and boundedness of multi-delay functional integro-differential equations of the second order, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 109, 169–173, 2015.
  • [12] J. R. Graef and O. Tunç, Asymptotic behavior of solutions of Volterra integro- differential equations with and without retardation, J. Integral Equations Appl. 33 (3), 289–300, 2021.
  • [13] G. H. Hardy, J. E. Littlewood and G. Pólya, Inequalities, Cambridge University Press, Cambridge, 1988, Reprint of the 1952 edition.
  • [14] Q.-H. Ma, J. Pečarić and J.-M. Zhang, Integral inequalities of systems and the estimate for solutions of certain nonlinear two-dimensional fractional differential systems, Comput. Math. Appl. 61, 3258–3267, 2011.
  • [15] M. Medveď, A new approach to an analysis of Henry type integral inequalities and their Bihari type versions, J. Math. Anal. Appl. 214, 349–366, 1997.
  • [16] M. Medveď, Integral inequalities and global solutions of semilinear evolution equations, J. Math. Anal. Appl. 267, 643–650, 2002.
  • [17] M. Medveď and M. Pospíšil, Asymptotic integration of fractional differential equations with integrodifferential right-hand side, Math. Modelling Anal. 20, 471–489, 2015.
  • [18] A. P. Prudnikov, Yu. A. Brychkov and O. I. Marichev, Integral and Series: Elementary Functions, Vol. 1, Nauka, Moscow, 1981 [in Russian].

Asymptotic behavior of solutions of $N$-th order forced integro-differential equations with $\beta$-Laplacian

Year 2023, , 923 - 930, 15.08.2023
https://doi.org/10.15672/hujms.1076176

Abstract

The authors prove some new results on the asymptotic behavior of solutions of $n$th order forced integro-differential equations with a $\beta$-Laplacian. The main goal is to investigate when all solutions behave at infinity like certain nontrivial nonlinear functions. They apply a technique involving Young's inequality. The paper concludes with two examples illustrating the applicability of the main results.

References

  • [1] M. Bohner, S. R. Grace and N. Sultana, Asymptotic behavior of nonoscillatory solutions of higher-order integro-dynamic equations, Opuscula Math. 34, 5–14, 2014.
  • [2] E. Brestovanská and M. Medveď, Asymptotic behavior of solutions to second-order differential equations with fractional derivative perturbations, Electron. J. Differ. Eq. 2014 (201), 1–10, 2014.
  • [3] B. C. Dhage, A. V. Deshmukh and J. R. Graef, On asymptotic behavior of a nonlinear functional integral equation, Commun. Appl. Nonlinear Anal. 15, 55–67, 2008.
  • [4] S. R. Grace, J. R. Graef, S. Panigrahi and E. Tunç, On the oscillatory behavior of Volterra integral equations on time-scales, PanAmer. Math. J. 23, 35–41, 2013.
  • [5] S. R. Grace, J. R. Graef and E. Tunç, Asymptotic behavior of solutions of certain integro-differential equations, PanAmer. Math. J. 29, 45–60, 2019.
  • [6] S. R. Grace, J. R. Graef and E. Tunç, On the asymptotic behavior of solutions of certain integro-differential equations, J. Appl. Anal. Comput. 9, 1305–1318, 2019.
  • [7] S. R. Grace, J. R. Graef and A. Zafer, Oscillation of integro-dynamic equations on time scales, Appl. Math. Lett. 26, 383–386, 2013.
  • [8] S. R. Grace and A. Zafer, Oscillatory behavior of integro-dynamic and integral equations on time scales, Appl. Math. Lett. 28, 47–52, 2014.
  • [9] J. R. Graef and S. R. Grace, On the asymptotic behavior of solutions of certain forced third order integro-differential equations with d-Laplacian, Appl. Math. Lett. 83, 40– 45, 2018.
  • [10] J. R. Graef, S. R. Grace and E. Tunç, On the oscillation of certain integral equations, Publ. Math. Debrecen 90, 195–204, 2017.
  • [11] J. R. Graef and C. Tunç, Continuability and boundedness of multi-delay functional integro-differential equations of the second order, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 109, 169–173, 2015.
  • [12] J. R. Graef and O. Tunç, Asymptotic behavior of solutions of Volterra integro- differential equations with and without retardation, J. Integral Equations Appl. 33 (3), 289–300, 2021.
  • [13] G. H. Hardy, J. E. Littlewood and G. Pólya, Inequalities, Cambridge University Press, Cambridge, 1988, Reprint of the 1952 edition.
  • [14] Q.-H. Ma, J. Pečarić and J.-M. Zhang, Integral inequalities of systems and the estimate for solutions of certain nonlinear two-dimensional fractional differential systems, Comput. Math. Appl. 61, 3258–3267, 2011.
  • [15] M. Medveď, A new approach to an analysis of Henry type integral inequalities and their Bihari type versions, J. Math. Anal. Appl. 214, 349–366, 1997.
  • [16] M. Medveď, Integral inequalities and global solutions of semilinear evolution equations, J. Math. Anal. Appl. 267, 643–650, 2002.
  • [17] M. Medveď and M. Pospíšil, Asymptotic integration of fractional differential equations with integrodifferential right-hand side, Math. Modelling Anal. 20, 471–489, 2015.
  • [18] A. P. Prudnikov, Yu. A. Brychkov and O. I. Marichev, Integral and Series: Elementary Functions, Vol. 1, Nauka, Moscow, 1981 [in Russian].
There are 18 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Said R. Grace 0000-0001-8783-5227

John R. Graef 0000-0002-8149-4633

Ercan Tunç 0000-0001-8860-608X

Publication Date August 15, 2023
Published in Issue Year 2023

Cite

APA Grace, S. R., Graef, J. R., & Tunç, E. (2023). Asymptotic behavior of solutions of $N$-th order forced integro-differential equations with $\beta$-Laplacian. Hacettepe Journal of Mathematics and Statistics, 52(4), 923-930. https://doi.org/10.15672/hujms.1076176
AMA Grace SR, Graef JR, Tunç E. Asymptotic behavior of solutions of $N$-th order forced integro-differential equations with $\beta$-Laplacian. Hacettepe Journal of Mathematics and Statistics. August 2023;52(4):923-930. doi:10.15672/hujms.1076176
Chicago Grace, Said R., John R. Graef, and Ercan Tunç. “Asymptotic Behavior of Solutions of $N$-Th Order Forced Integro-Differential Equations With $\beta$-Laplacian”. Hacettepe Journal of Mathematics and Statistics 52, no. 4 (August 2023): 923-30. https://doi.org/10.15672/hujms.1076176.
EndNote Grace SR, Graef JR, Tunç E (August 1, 2023) Asymptotic behavior of solutions of $N$-th order forced integro-differential equations with $\beta$-Laplacian. Hacettepe Journal of Mathematics and Statistics 52 4 923–930.
IEEE S. R. Grace, J. R. Graef, and E. Tunç, “Asymptotic behavior of solutions of $N$-th order forced integro-differential equations with $\beta$-Laplacian”, Hacettepe Journal of Mathematics and Statistics, vol. 52, no. 4, pp. 923–930, 2023, doi: 10.15672/hujms.1076176.
ISNAD Grace, Said R. et al. “Asymptotic Behavior of Solutions of $N$-Th Order Forced Integro-Differential Equations With $\beta$-Laplacian”. Hacettepe Journal of Mathematics and Statistics 52/4 (August 2023), 923-930. https://doi.org/10.15672/hujms.1076176.
JAMA Grace SR, Graef JR, Tunç E. Asymptotic behavior of solutions of $N$-th order forced integro-differential equations with $\beta$-Laplacian. Hacettepe Journal of Mathematics and Statistics. 2023;52:923–930.
MLA Grace, Said R. et al. “Asymptotic Behavior of Solutions of $N$-Th Order Forced Integro-Differential Equations With $\beta$-Laplacian”. Hacettepe Journal of Mathematics and Statistics, vol. 52, no. 4, 2023, pp. 923-30, doi:10.15672/hujms.1076176.
Vancouver Grace SR, Graef JR, Tunç E. Asymptotic behavior of solutions of $N$-th order forced integro-differential equations with $\beta$-Laplacian. Hacettepe Journal of Mathematics and Statistics. 2023;52(4):923-30.