Year 2023,
, 753 - 767, 30.05.2023
Mohammad Shahriari
,
Hanif Mirzaei
References
- [1] T. Abdeljawad, On conformable fractional calculus, J. Comput. Appl. Math. 279,
57-66, 2015.
- [2] B.P. Allahverdiev, H. Tuna and Y. Yalcinkaya, Spectral expansion for singular conformable
Sturm-Liouville problem, Math. Commun. 25 (2), 237-252, 2020.
- [3] J.B. Conway, Functions of One Complex Variable, Springer-Verlag, New York, 1995.
- [4] Y. Çakmak, Inverse nodal problem for a conformable fractional diffusion operator,
Inverse Probl. Sci. Eng. 29 (9), 1308-1322, 2021.
- [5] K. Diethelm, The Analysis of Fractional Differential Equations, Springer-Verlag,
Berlin, 2010.
- [6] G.M.L. Gladwell, Inverse problem in vibration, Kluwer Academic Publishers, New
York, 2004.
- [7] T. Gulshen, E. Yilmaz and H. Kemaloglu, Conformable fractional Sturm-Liouville
equation and some existence results on time scales, Turk. J. Math. 42 (3), 1348-1360,
2018.
- [8] O.H. Hald, Discontinuous inverse eigenvalue problems, Comm. Pure Appl. Math. 37
(5), 539-577, 1984.
- [9] H. Hochstadt and B. Lieberman, An inverse Sturm-Liouville problem with mixed given
data, SIAM J. Appl. Math. 34 (4), 676-680, 1987.
- [10] B. Jin and W. Rundell, An inverse Sturm-Liouville problem with a fractional derivative,
J. Comput. Phys. 231 (14), 4954-4966, 2012.
- [11] R. Khalil, M. Al Horani and A. Yousef, A new definition of fractional derivative. J.
Comput. Appl. Math. 264, 65-70, 2014.
- [12] A.A. Kilbas, H.M. Srivastava and J.J. Trujillo, Theory and applications of fractional
differential equations,North-Holland Mathematics Studies, Elsevier Science, 2006.
- [13] A. Kirsch, An Introduction to the Mathematical Theory of Inverse Problems, Springer-
Verlag, New York, 1996.
- [14] M. Klimek and O.P. Agrawal, Fractional Sturm-Liouville problem. Comput. Math.
Appl. 66 (5), 795-812, 2013.
- [15] B.Y. Levin, Lectures on Entire Functions, Transl. Math. Monographs, American
Mathematical Society, 1996.
- [16] H. Mortazaasl and A. Jodayree Akbarfam, Trace formula and inverse nodal problem
for a conformable fractional Sturm-Liouville problem, Inverse Probl. Sci. Eng. 28 (4),
524-555, 2020.
- [17] G. Mutlu, Associated functions of non-selfadjoint Sturm-Liouville operator with operator
coefficient, TWMS Journal of Applied and Engineering Mathematics 11 (1),
113-121, 2020.
- [18] G. Mutlu and E.K. Arpat, Spectral properties of non-selfadjoint Sturm-Liouville operator
equation on the real axis, Hacet. J. Math. Stat. 49 (5), 1686-1694, 2020.
- [19] A.S. Ozkan and İ. Adalar, Inverse problems for a conformable fractional Sturm-
Liouville operator, J. Inverse Ill-Posed Probl. 28 (6), 775-782, 2020.
- [20] A. P´alfalvi, Efficient solution of a vibration equation involving fractional derivatives.
Int. J. Nonlin. Mech. 45, 169-175, 2010.
- [21] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.
- [22] M. Rivero, J.J. Trujillo and M.P. Velasco, A fractional approach to the Sturm-Liouville
problem, Centr. Eur. J. Phys. 11 (10), 1246-1254, 2013.
- [23] A.M. Sedletski, Asymptotic formulas for zeros of functions of MittagLeffler type, Anal.
Math. 20 (2), 117-132, 1994.
- [24] M. Shahriari, Inverse Sturm-Liouville problem with eigenparameter dependent boundary
and transmission conditions, Azerb. J. Math. 4 (2), 16-30, 2014.
- [25] M. Shahriari, A.J. Akbarfam and G. Teschl, Uniqueness for inverse Sturm-Liouville
problems with a finite number of transmission conditions, J. Math. Anal. Appl. 395,
19-29, 2012.
- [26] M. Shahriari, M. Fallahi and F. Shareghi, Reconstruction of the Sturm-Liouville operators
with a finite number of tranmission and parameter dependent boundary conditions,
Azerb. J. Math. 8 (2), 3-20, 2018.
- [27] G. Teschl, Mathematical Methods in Quantum Mechanics; With Applications to
Schrödinger Operators, Graduate Studies in Mathematics, American Mathematical
Society, Rhode Island, 2009.
- [28] C.F. Yang, An Interior inverse problem for discontinuous boundary-value problems,
Integral Equations Operator Theory 65, 593-604, 2009.
- [29] C.F. Yang and X.P. Yang, An interior inverse problem for the Sturm-Liouville operator
with discontinuous conditions, Appl. Math. Lett. 22, 1315-1319, 2009.
- [30] M. Zayernouri, G. Em Karniadakis, Fractional Sturm-Liouville eigen-problems: Theory
and numerical approximation, J. Comput. Phys. 252, 495-517 2013.
Inverse Sturm-Liouville problem with conformable derivative and transmission conditions
Year 2023,
, 753 - 767, 30.05.2023
Mohammad Shahriari
,
Hanif Mirzaei
Abstract
In this paper, we study the inverse problem for Sturm-Liouville problem with conformable fractional differential operators of order $\alpha$, $0.5 < \alpha\leq 1$ and finite number of interior discontinuous conditions. For this aim first, the asymptotic formulas for solutions, eigenvalues and eigenfunctions of the problem are calculated. Then some uniqueness theorems for proposed inverse eigenvalue problem are proved. Finally, the Hald's theorem for conformable Sturm-Liouville problem is developed.
References
- [1] T. Abdeljawad, On conformable fractional calculus, J. Comput. Appl. Math. 279,
57-66, 2015.
- [2] B.P. Allahverdiev, H. Tuna and Y. Yalcinkaya, Spectral expansion for singular conformable
Sturm-Liouville problem, Math. Commun. 25 (2), 237-252, 2020.
- [3] J.B. Conway, Functions of One Complex Variable, Springer-Verlag, New York, 1995.
- [4] Y. Çakmak, Inverse nodal problem for a conformable fractional diffusion operator,
Inverse Probl. Sci. Eng. 29 (9), 1308-1322, 2021.
- [5] K. Diethelm, The Analysis of Fractional Differential Equations, Springer-Verlag,
Berlin, 2010.
- [6] G.M.L. Gladwell, Inverse problem in vibration, Kluwer Academic Publishers, New
York, 2004.
- [7] T. Gulshen, E. Yilmaz and H. Kemaloglu, Conformable fractional Sturm-Liouville
equation and some existence results on time scales, Turk. J. Math. 42 (3), 1348-1360,
2018.
- [8] O.H. Hald, Discontinuous inverse eigenvalue problems, Comm. Pure Appl. Math. 37
(5), 539-577, 1984.
- [9] H. Hochstadt and B. Lieberman, An inverse Sturm-Liouville problem with mixed given
data, SIAM J. Appl. Math. 34 (4), 676-680, 1987.
- [10] B. Jin and W. Rundell, An inverse Sturm-Liouville problem with a fractional derivative,
J. Comput. Phys. 231 (14), 4954-4966, 2012.
- [11] R. Khalil, M. Al Horani and A. Yousef, A new definition of fractional derivative. J.
Comput. Appl. Math. 264, 65-70, 2014.
- [12] A.A. Kilbas, H.M. Srivastava and J.J. Trujillo, Theory and applications of fractional
differential equations,North-Holland Mathematics Studies, Elsevier Science, 2006.
- [13] A. Kirsch, An Introduction to the Mathematical Theory of Inverse Problems, Springer-
Verlag, New York, 1996.
- [14] M. Klimek and O.P. Agrawal, Fractional Sturm-Liouville problem. Comput. Math.
Appl. 66 (5), 795-812, 2013.
- [15] B.Y. Levin, Lectures on Entire Functions, Transl. Math. Monographs, American
Mathematical Society, 1996.
- [16] H. Mortazaasl and A. Jodayree Akbarfam, Trace formula and inverse nodal problem
for a conformable fractional Sturm-Liouville problem, Inverse Probl. Sci. Eng. 28 (4),
524-555, 2020.
- [17] G. Mutlu, Associated functions of non-selfadjoint Sturm-Liouville operator with operator
coefficient, TWMS Journal of Applied and Engineering Mathematics 11 (1),
113-121, 2020.
- [18] G. Mutlu and E.K. Arpat, Spectral properties of non-selfadjoint Sturm-Liouville operator
equation on the real axis, Hacet. J. Math. Stat. 49 (5), 1686-1694, 2020.
- [19] A.S. Ozkan and İ. Adalar, Inverse problems for a conformable fractional Sturm-
Liouville operator, J. Inverse Ill-Posed Probl. 28 (6), 775-782, 2020.
- [20] A. P´alfalvi, Efficient solution of a vibration equation involving fractional derivatives.
Int. J. Nonlin. Mech. 45, 169-175, 2010.
- [21] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.
- [22] M. Rivero, J.J. Trujillo and M.P. Velasco, A fractional approach to the Sturm-Liouville
problem, Centr. Eur. J. Phys. 11 (10), 1246-1254, 2013.
- [23] A.M. Sedletski, Asymptotic formulas for zeros of functions of MittagLeffler type, Anal.
Math. 20 (2), 117-132, 1994.
- [24] M. Shahriari, Inverse Sturm-Liouville problem with eigenparameter dependent boundary
and transmission conditions, Azerb. J. Math. 4 (2), 16-30, 2014.
- [25] M. Shahriari, A.J. Akbarfam and G. Teschl, Uniqueness for inverse Sturm-Liouville
problems with a finite number of transmission conditions, J. Math. Anal. Appl. 395,
19-29, 2012.
- [26] M. Shahriari, M. Fallahi and F. Shareghi, Reconstruction of the Sturm-Liouville operators
with a finite number of tranmission and parameter dependent boundary conditions,
Azerb. J. Math. 8 (2), 3-20, 2018.
- [27] G. Teschl, Mathematical Methods in Quantum Mechanics; With Applications to
Schrödinger Operators, Graduate Studies in Mathematics, American Mathematical
Society, Rhode Island, 2009.
- [28] C.F. Yang, An Interior inverse problem for discontinuous boundary-value problems,
Integral Equations Operator Theory 65, 593-604, 2009.
- [29] C.F. Yang and X.P. Yang, An interior inverse problem for the Sturm-Liouville operator
with discontinuous conditions, Appl. Math. Lett. 22, 1315-1319, 2009.
- [30] M. Zayernouri, G. Em Karniadakis, Fractional Sturm-Liouville eigen-problems: Theory
and numerical approximation, J. Comput. Phys. 252, 495-517 2013.