Research Article
BibTex RIS Cite
Year 2022, , 1379 - 1384, 01.10.2022
https://doi.org/10.15672/hujms.1087633

Abstract

References

  • [1] V. Balaz and T. Šalát, Uniform density $u$ and corresponding $I_{u}$- convergence, Math. Commun. 11, 1-7, 2006.
  • [2] M. Balcerzak, S. Glab and A. Wachowicz, Qualitative properties of ideal convergent subsequences and rearrangements Acta Math. Hungar. 150, 312-323, 2016.
  • [3] M. Balcerzak, S. Glab and P. Leonetti, Another characterization of meager ideals, submitted for publication, 2021.
  • [4] M. Balcerzak and P. Leonetti, On the relationship between ideal cluster points and ideal limit points, Topology and Appl. 252, 178-190, 2019.
  • [5] M. Balcerzak and P. Leonetti, The Baire category of subsequences and permutations which preserve limit points, Results Math. 121, 2020.
  • [6] P. Billingsley, Probability and measure, Wiley, New york, 1979.
  • [7] R.C. Buck and H. Pollard, Convergence and summability properties of subsequences, Bull. Amer. Math. Soc. 49, 924-931, 1943.
  • [8] K. Demirci, I-limit superior and inferior, Math. Commun. 6, 165-172, 2001.
  • [9] I. Farah, Analytic quotients. Theory of lifting for quotients over analytic ideals on integers, Mem. Amer. Math. Soc. 148, xvi+177 pp, 2000.
  • [10] H. Fast, Sur la convergence statistique, Colloq. Math. 2, 241-244, 1951.
  • [11] J.A. Fridy, Statistical limit points, Proc. Amer. Math. Soc. 118, 1187-1192, 1993.
  • [12] X. He, H. Zhang, S. Zhang The Borel complexity of ideal limit points, Topology and Appl. 312, 2022.
  • [13] T.A. Keagy, Summability of certain category two classes, Houston J. Math. 3, 61-65, 1977.
  • [14] P. Kostyrko, T. Šalát and W. Wilczyński, $I$-convergence, Real Anal. Exchange, 26, 669-686, 2000/2001.
  • [15] P. Leonetti, H.I. Miller and L. Miller-Van Wieren, Duality between measure and category of almost all subsequences of a given sequences, Period. Math. Hungar. 78, 152-156, 2019.
  • [16] P. Leonetti, Thinnable ideals and invariance of cluster points, Rocky Mount. J. Math. 48(6), 2018.
  • [17] P. Leonetti, Invariance of ideal limit points, Topology and Appl. 252, 169-177, 2019.
  • [18] L. Miller-Van Wieren, E. Taş and T. Yurdakadim, Category theoretical view of Icluster and I-limit points of subsequences, Acta Comment. Univ. Tartu. Math. 24, 103-108, 2020.
  • [19] H.I. Miller and C. Orhan, On almost convergence and statistically convergent subsequences, Acta. Math. Hungar. 93, 135-151, 2001.
  • [20] H.I. Miller and L. Miller-Van Wieren, Some statistical cluster point theorems, Hacet. J. Math. Stat. 44, 1405-1409, 2015.
  • [21] H.I. Miller and L. Miller-Van Wieren, Statistical cluster point and statistical limit point sets of subsequences of a given sequence, Hacet. J. Math. 49, 494-497, 2020.
  • [22] T. Yurdakadim and L. Miller-Van Wieren, Subsequential results on uniform statistical convergence, Sarajevo J. Math. 12, 1-9, 2016.
  • [23] T. Yurdakadim and L. Miller-Van Wieren, Some results on uniform statistical cluster points, Turk. J. Math. 41, 1133-1139, 2017.
  • [24] J. Zeager, Buck-type theorems for statistical convergence, Radovi Math. 9, 59-69, 1999.

Some new insights into ideal convergence and subsequences

Year 2022, , 1379 - 1384, 01.10.2022
https://doi.org/10.15672/hujms.1087633

Abstract

Some results on the sets of almost convergent, statistically convergent, uniformly statistically convergent, $I$-convergent subsequences of $(s_{n})$ have been obtained by many authors via establishing a one-to-one correspondence between the interval $(0,1]$ and the collection of all subsequences of a given sequence $s=(s_{n})$. However, there are still some gaps in the existing literature. In this paper we plan to fill some of the gaps with new results. Some of them are easily derived from earlier results but they offer some new deeper insights.

References

  • [1] V. Balaz and T. Šalát, Uniform density $u$ and corresponding $I_{u}$- convergence, Math. Commun. 11, 1-7, 2006.
  • [2] M. Balcerzak, S. Glab and A. Wachowicz, Qualitative properties of ideal convergent subsequences and rearrangements Acta Math. Hungar. 150, 312-323, 2016.
  • [3] M. Balcerzak, S. Glab and P. Leonetti, Another characterization of meager ideals, submitted for publication, 2021.
  • [4] M. Balcerzak and P. Leonetti, On the relationship between ideal cluster points and ideal limit points, Topology and Appl. 252, 178-190, 2019.
  • [5] M. Balcerzak and P. Leonetti, The Baire category of subsequences and permutations which preserve limit points, Results Math. 121, 2020.
  • [6] P. Billingsley, Probability and measure, Wiley, New york, 1979.
  • [7] R.C. Buck and H. Pollard, Convergence and summability properties of subsequences, Bull. Amer. Math. Soc. 49, 924-931, 1943.
  • [8] K. Demirci, I-limit superior and inferior, Math. Commun. 6, 165-172, 2001.
  • [9] I. Farah, Analytic quotients. Theory of lifting for quotients over analytic ideals on integers, Mem. Amer. Math. Soc. 148, xvi+177 pp, 2000.
  • [10] H. Fast, Sur la convergence statistique, Colloq. Math. 2, 241-244, 1951.
  • [11] J.A. Fridy, Statistical limit points, Proc. Amer. Math. Soc. 118, 1187-1192, 1993.
  • [12] X. He, H. Zhang, S. Zhang The Borel complexity of ideal limit points, Topology and Appl. 312, 2022.
  • [13] T.A. Keagy, Summability of certain category two classes, Houston J. Math. 3, 61-65, 1977.
  • [14] P. Kostyrko, T. Šalát and W. Wilczyński, $I$-convergence, Real Anal. Exchange, 26, 669-686, 2000/2001.
  • [15] P. Leonetti, H.I. Miller and L. Miller-Van Wieren, Duality between measure and category of almost all subsequences of a given sequences, Period. Math. Hungar. 78, 152-156, 2019.
  • [16] P. Leonetti, Thinnable ideals and invariance of cluster points, Rocky Mount. J. Math. 48(6), 2018.
  • [17] P. Leonetti, Invariance of ideal limit points, Topology and Appl. 252, 169-177, 2019.
  • [18] L. Miller-Van Wieren, E. Taş and T. Yurdakadim, Category theoretical view of Icluster and I-limit points of subsequences, Acta Comment. Univ. Tartu. Math. 24, 103-108, 2020.
  • [19] H.I. Miller and C. Orhan, On almost convergence and statistically convergent subsequences, Acta. Math. Hungar. 93, 135-151, 2001.
  • [20] H.I. Miller and L. Miller-Van Wieren, Some statistical cluster point theorems, Hacet. J. Math. Stat. 44, 1405-1409, 2015.
  • [21] H.I. Miller and L. Miller-Van Wieren, Statistical cluster point and statistical limit point sets of subsequences of a given sequence, Hacet. J. Math. 49, 494-497, 2020.
  • [22] T. Yurdakadim and L. Miller-Van Wieren, Subsequential results on uniform statistical convergence, Sarajevo J. Math. 12, 1-9, 2016.
  • [23] T. Yurdakadim and L. Miller-Van Wieren, Some results on uniform statistical cluster points, Turk. J. Math. 41, 1133-1139, 2017.
  • [24] J. Zeager, Buck-type theorems for statistical convergence, Radovi Math. 9, 59-69, 1999.
There are 24 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Leila Miller-van Wieren 0000-0002-7621-9231

Emre Taş 0000-0001-5866-4991

Tuğba Yurdakadim 0000-0003-2522-6092

Publication Date October 1, 2022
Published in Issue Year 2022

Cite

APA Miller-van Wieren, L., Taş, E., & Yurdakadim, T. (2022). Some new insights into ideal convergence and subsequences. Hacettepe Journal of Mathematics and Statistics, 51(5), 1379-1384. https://doi.org/10.15672/hujms.1087633
AMA Miller-van Wieren L, Taş E, Yurdakadim T. Some new insights into ideal convergence and subsequences. Hacettepe Journal of Mathematics and Statistics. October 2022;51(5):1379-1384. doi:10.15672/hujms.1087633
Chicago Miller-van Wieren, Leila, Emre Taş, and Tuğba Yurdakadim. “Some New Insights into Ideal Convergence and Subsequences”. Hacettepe Journal of Mathematics and Statistics 51, no. 5 (October 2022): 1379-84. https://doi.org/10.15672/hujms.1087633.
EndNote Miller-van Wieren L, Taş E, Yurdakadim T (October 1, 2022) Some new insights into ideal convergence and subsequences. Hacettepe Journal of Mathematics and Statistics 51 5 1379–1384.
IEEE L. Miller-van Wieren, E. Taş, and T. Yurdakadim, “Some new insights into ideal convergence and subsequences”, Hacettepe Journal of Mathematics and Statistics, vol. 51, no. 5, pp. 1379–1384, 2022, doi: 10.15672/hujms.1087633.
ISNAD Miller-van Wieren, Leila et al. “Some New Insights into Ideal Convergence and Subsequences”. Hacettepe Journal of Mathematics and Statistics 51/5 (October 2022), 1379-1384. https://doi.org/10.15672/hujms.1087633.
JAMA Miller-van Wieren L, Taş E, Yurdakadim T. Some new insights into ideal convergence and subsequences. Hacettepe Journal of Mathematics and Statistics. 2022;51:1379–1384.
MLA Miller-van Wieren, Leila et al. “Some New Insights into Ideal Convergence and Subsequences”. Hacettepe Journal of Mathematics and Statistics, vol. 51, no. 5, 2022, pp. 1379-84, doi:10.15672/hujms.1087633.
Vancouver Miller-van Wieren L, Taş E, Yurdakadim T. Some new insights into ideal convergence and subsequences. Hacettepe Journal of Mathematics and Statistics. 2022;51(5):1379-84.

Cited By

On ideal bounded sequences
Communications Faculty Of Science University of Ankara Series A1Mathematics and Statistics
https://doi.org/10.31801/cfsuasmas.1474890