Research Article
BibTex RIS Cite

Year 2023, Volume: 52 Issue: 3, 729 - 752, 30.05.2023
https://doi.org/10.15672/hujms.1092739
https://izlik.org/JA88FD28AG

Abstract

References

  • [1] S. Djennadi, N. Shawagfeh and O. A. Arqub, A fractional Tikhonov regularization method for an inverse backward and source problems in the time-space fractional diffusion equations, Chaos, Soliton Fractals 150, 111127, 2021.
  • [2] S. Djennadi, N. Shawagfeh and O. A. Arqub, A numerical algorithm in reproducing kernel-based approach for solving the inverse source problem of the timespace fractional diffusion equation, Partial Differential Equations in Applied Mathematics, 4, 100164, 2021.
  • [3] H. Egger, Semi-iterative regularization in Hilbert scales, Siam J. Numer. Anal. 44 (1), 66–81, 2006.
  • [4] H. Egger and B. Hofmann, Tikhonov regularization in Hilbert scales under conditional stability assumptions, arXiv:1807.05807v1[math.NA], 16 July 2018.
  • [5] H. W. Engl, M. Hanke and A. Neubauer, Regularization of inverse problems, Springer Science & Business Media, 1996.
  • [6] S. George and M. T. Nair, Error bounds and parameter choice strategies for simplified regularization in Hilbert scales, Inter. Equ. Oper. Theory 29, 231–242, 1997.
  • [7] D. Gerth, E. Klann, R. Ramlau and L. Reichel, On fractional Tikhonov regularization, J. Inverse & Ill-Posed Problems, 23 (6), 611–625, 2015.
  • [8] C. W. Groetsch, Generalized inverses of linear operators: Representation and Approximation, Marcel Dekker, INC, New York, 1977.
  • [9] J. Hadamard, Lectures on Cauchy’s problem in linear partial differential equations, Dover Publications, New York, 1953.
  • [10] M. E. Hochstenbach, S. Noschese and L. Reichel, Fractional regularization matrices for linear discrete ill-posed problems, J. Eng. Math. 93 (1), 113–129, 2015.
  • [11] M. E. Hochstenbach and L, Reichel, Fractional Tikhonov regularization for linear discrete ill-posed problems, BIT, 51 (1), 197–215, 2011.
  • [12] E. Klann and R. Ramlau, Regularization by fractional filter methods and data smoothing, Inverse Problems, 24 (2), 025018, 2008.
  • [13] S. Lu, S. V. Perverzyev, Y. Shao and U. Tautenhahn, On the generalized discrepancy principle for Tikhonov regularization in Hilbert scales, J. Integral Equ. Appl. 22 (3), 483-517, 2010.
  • [14] P. Mahale and P. K. Dadsene, Simplified generalized Gauss-Newton method for nonlinear ill-posed operator equations in Hilbert scales, Comput. Methods. 18 (4), 687-702, 2018.
  • [15] P. Mathé and S. V. Pereverzev, Geometry of linear ill-posed problems in variable Hilbert scales, Inverse Problems, 19 (3), 789–803, 2003.
  • [16] C. Mekoth, S. George and P. Jidesh, Fractional Tikhonov regularization method in Hilbert scales, Appl. Math. Comput. 392, 125701, 2021.
  • [17] C. Mekoth, S. George, P. Jidesh and S. M. Erappa, Finite dimensional realization of fractional Tikhonov regularization method in Hilbert scales, Partial Differential Equations in Applied Mathematics, 5, 100246, 2022.
  • [18] S. Mohammady and M. R. Eslahchi, Extension of Tikhonov regularization method using linear fractional programming, J. Comput. Appl. Math. 371, 112677, 2020.
  • [19] S. Morigi, L. Reichel and F. Sgallari, Fractional Tikhonov regularization with a nonlinear penalty term, J. Comput. Appl. Math. 324, 142–154, 2017.
  • [20] A. Neubauer, Tikhonov regularization of nonlinear ill-posed problems in Hilbert scales, Appl. Anal. 46 (1-2), 59–72, 1992.
  • [21] D. L. Phillips, A technique for the numerical solution of certain integral equations of the first kind, J. ACM 9 (1), 84–97, 1962.
  • [22] J. Qi-nian, Error estimates of some Newton-type methods for solving nonlinear inverse problems in Hilbert scales, Inverse Problems, 16 (1), 187–197, 2000.
  • [23] M. Rezghi and S. M. Hosseini, A new variant of L-curve for Tikhonov regularization, J. Comput. Appl. Math. 231, 914924, 2009.
  • [24] T. Schroter, and U. Tautenhahn, Error estimates for tikhonov regularization in hilbert scales, Numer. Funct. Anal. and Optim. 15, 155168, 1994.
  • [25] Jr. C. B. Shaw, Improvements of the resolution of an instrument by numerical solution of an integral equation, J. Math. Anal. Appl. 37, 83–112, 1972.
  • [26] Y. Sun, Y. Zhang and Y. Wen, Image Reconstruction Based on Fractional Tikhonov Framework for Planar Array Capacitance Sensor, in IEEE Transactions on Computational Imaging, 8, 109-120, 2022.
  • [27] U. Tautenhahn, On a general regularization scheme for non-linear ill-posed problems: II. Regularization in Hilbert scales, Inverse Problems, 14 (6), 1607–1616, 1998.

Finite dimensional realization of a parameter choice strategy for fractional Tikhonov regularization method in Hilbert scales

Year 2023, Volume: 52 Issue: 3, 729 - 752, 30.05.2023
https://doi.org/10.15672/hujms.1092739
https://izlik.org/JA88FD28AG

Abstract

One of the most crucial parts of applying a regularization method to solve an ill-posed problem is choosing a regularization parameter to obtain an optimal order error estimate. In this paper, we consider the finite dimensional realization of the parameter choice strategy proposed in [C. Mekoth, S. George and P. Jidesh, Appl. Math. Comput. 392, 125701, 2021] for Fractional Tikhonov regularization method for linear ill-posed operator equations in the setting of Hilbert scales.

References

  • [1] S. Djennadi, N. Shawagfeh and O. A. Arqub, A fractional Tikhonov regularization method for an inverse backward and source problems in the time-space fractional diffusion equations, Chaos, Soliton Fractals 150, 111127, 2021.
  • [2] S. Djennadi, N. Shawagfeh and O. A. Arqub, A numerical algorithm in reproducing kernel-based approach for solving the inverse source problem of the timespace fractional diffusion equation, Partial Differential Equations in Applied Mathematics, 4, 100164, 2021.
  • [3] H. Egger, Semi-iterative regularization in Hilbert scales, Siam J. Numer. Anal. 44 (1), 66–81, 2006.
  • [4] H. Egger and B. Hofmann, Tikhonov regularization in Hilbert scales under conditional stability assumptions, arXiv:1807.05807v1[math.NA], 16 July 2018.
  • [5] H. W. Engl, M. Hanke and A. Neubauer, Regularization of inverse problems, Springer Science & Business Media, 1996.
  • [6] S. George and M. T. Nair, Error bounds and parameter choice strategies for simplified regularization in Hilbert scales, Inter. Equ. Oper. Theory 29, 231–242, 1997.
  • [7] D. Gerth, E. Klann, R. Ramlau and L. Reichel, On fractional Tikhonov regularization, J. Inverse & Ill-Posed Problems, 23 (6), 611–625, 2015.
  • [8] C. W. Groetsch, Generalized inverses of linear operators: Representation and Approximation, Marcel Dekker, INC, New York, 1977.
  • [9] J. Hadamard, Lectures on Cauchy’s problem in linear partial differential equations, Dover Publications, New York, 1953.
  • [10] M. E. Hochstenbach, S. Noschese and L. Reichel, Fractional regularization matrices for linear discrete ill-posed problems, J. Eng. Math. 93 (1), 113–129, 2015.
  • [11] M. E. Hochstenbach and L, Reichel, Fractional Tikhonov regularization for linear discrete ill-posed problems, BIT, 51 (1), 197–215, 2011.
  • [12] E. Klann and R. Ramlau, Regularization by fractional filter methods and data smoothing, Inverse Problems, 24 (2), 025018, 2008.
  • [13] S. Lu, S. V. Perverzyev, Y. Shao and U. Tautenhahn, On the generalized discrepancy principle for Tikhonov regularization in Hilbert scales, J. Integral Equ. Appl. 22 (3), 483-517, 2010.
  • [14] P. Mahale and P. K. Dadsene, Simplified generalized Gauss-Newton method for nonlinear ill-posed operator equations in Hilbert scales, Comput. Methods. 18 (4), 687-702, 2018.
  • [15] P. Mathé and S. V. Pereverzev, Geometry of linear ill-posed problems in variable Hilbert scales, Inverse Problems, 19 (3), 789–803, 2003.
  • [16] C. Mekoth, S. George and P. Jidesh, Fractional Tikhonov regularization method in Hilbert scales, Appl. Math. Comput. 392, 125701, 2021.
  • [17] C. Mekoth, S. George, P. Jidesh and S. M. Erappa, Finite dimensional realization of fractional Tikhonov regularization method in Hilbert scales, Partial Differential Equations in Applied Mathematics, 5, 100246, 2022.
  • [18] S. Mohammady and M. R. Eslahchi, Extension of Tikhonov regularization method using linear fractional programming, J. Comput. Appl. Math. 371, 112677, 2020.
  • [19] S. Morigi, L. Reichel and F. Sgallari, Fractional Tikhonov regularization with a nonlinear penalty term, J. Comput. Appl. Math. 324, 142–154, 2017.
  • [20] A. Neubauer, Tikhonov regularization of nonlinear ill-posed problems in Hilbert scales, Appl. Anal. 46 (1-2), 59–72, 1992.
  • [21] D. L. Phillips, A technique for the numerical solution of certain integral equations of the first kind, J. ACM 9 (1), 84–97, 1962.
  • [22] J. Qi-nian, Error estimates of some Newton-type methods for solving nonlinear inverse problems in Hilbert scales, Inverse Problems, 16 (1), 187–197, 2000.
  • [23] M. Rezghi and S. M. Hosseini, A new variant of L-curve for Tikhonov regularization, J. Comput. Appl. Math. 231, 914924, 2009.
  • [24] T. Schroter, and U. Tautenhahn, Error estimates for tikhonov regularization in hilbert scales, Numer. Funct. Anal. and Optim. 15, 155168, 1994.
  • [25] Jr. C. B. Shaw, Improvements of the resolution of an instrument by numerical solution of an integral equation, J. Math. Anal. Appl. 37, 83–112, 1972.
  • [26] Y. Sun, Y. Zhang and Y. Wen, Image Reconstruction Based on Fractional Tikhonov Framework for Planar Array Capacitance Sensor, in IEEE Transactions on Computational Imaging, 8, 109-120, 2022.
  • [27] U. Tautenhahn, On a general regularization scheme for non-linear ill-posed problems: II. Regularization in Hilbert scales, Inverse Problems, 14 (6), 1607–1616, 1998.
There are 27 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Article
Authors

Chitra Mekoth 0000-0001-9072-9169

Santhosh George 0000-0002-3530-5539

Jidesh P 0000-0001-9448-1906

Publication Date May 30, 2023
DOI https://doi.org/10.15672/hujms.1092739
IZ https://izlik.org/JA88FD28AG
Published in Issue Year 2023 Volume: 52 Issue: 3

Cite

APA Mekoth, C., George, S., & P, J. (2023). Finite dimensional realization of a parameter choice strategy for fractional Tikhonov regularization method in Hilbert scales. Hacettepe Journal of Mathematics and Statistics, 52(3), 729-752. https://doi.org/10.15672/hujms.1092739
AMA 1.Mekoth C, George S, P J. Finite dimensional realization of a parameter choice strategy for fractional Tikhonov regularization method in Hilbert scales. Hacettepe Journal of Mathematics and Statistics. 2023;52(3):729-752. doi:10.15672/hujms.1092739
Chicago Mekoth, Chitra, Santhosh George, and Jidesh P. 2023. “Finite Dimensional Realization of a Parameter Choice Strategy for Fractional Tikhonov Regularization Method in Hilbert Scales”. Hacettepe Journal of Mathematics and Statistics 52 (3): 729-52. https://doi.org/10.15672/hujms.1092739.
EndNote Mekoth C, George S, P J (May 1, 2023) Finite dimensional realization of a parameter choice strategy for fractional Tikhonov regularization method in Hilbert scales. Hacettepe Journal of Mathematics and Statistics 52 3 729–752.
IEEE [1]C. Mekoth, S. George, and J. P, “Finite dimensional realization of a parameter choice strategy for fractional Tikhonov regularization method in Hilbert scales”, Hacettepe Journal of Mathematics and Statistics, vol. 52, no. 3, pp. 729–752, May 2023, doi: 10.15672/hujms.1092739.
ISNAD Mekoth, Chitra - George, Santhosh - P, Jidesh. “Finite Dimensional Realization of a Parameter Choice Strategy for Fractional Tikhonov Regularization Method in Hilbert Scales”. Hacettepe Journal of Mathematics and Statistics 52/3 (May 1, 2023): 729-752. https://doi.org/10.15672/hujms.1092739.
JAMA 1.Mekoth C, George S, P J. Finite dimensional realization of a parameter choice strategy for fractional Tikhonov regularization method in Hilbert scales. Hacettepe Journal of Mathematics and Statistics. 2023;52:729–752.
MLA Mekoth, Chitra, et al. “Finite Dimensional Realization of a Parameter Choice Strategy for Fractional Tikhonov Regularization Method in Hilbert Scales”. Hacettepe Journal of Mathematics and Statistics, vol. 52, no. 3, May 2023, pp. 729-52, doi:10.15672/hujms.1092739.
Vancouver 1.Mekoth C, George S, P J. Finite dimensional realization of a parameter choice strategy for fractional Tikhonov regularization method in Hilbert scales. Hacettepe Journal of Mathematics and Statistics [Internet]. 2023 May 1;52(3):729-52. Available from: https://izlik.org/JA88FD28AG