On semi-cover-avoiding 2-maximal subgroups of finite groups
Year 2024,
, 333 - 341, 23.04.2024
Xindan Chen
,
Tingting Qıu
,
Juping Tang
Abstract
A subgroup $H$ of a finite group $G$ is said to be ``semi-cover-avoiding in $G$'', if there exists a chief series of $G$ such that $H$ covers or avoids every chief factor of the chief series. In this article, we will consider some 2-maximal subgroups with the property of semi-cover-avoiding of a group $G$ and explore the structure of $G$.
Supporting Institution
NSFC;NSFC;NSFC-RFBR; the Natural Science Foundation of Jiangsu Province
Project Number
Grant \# 11871062;Grant\ # 11701223;Grant\ # 12011530061;Grant\ # BK20181451
References
- [1] M. Bianchi, A. G. B. Mauri and P. Hauck, On finite groups with nilpotent Sylownormalizers,
Arch. Math. 47 (3), 193-197, 1986.
- [2] K. Doerk and T. Hawkes, Finite Soluble Groups, Walter de Gruyter, Berlin-New York,
1992.
- [3] Y. Fan, X. Guo and K. P. Shum, Remarks on two generalizations of normality of
subgroups, Chinese J. Contemp. Math. 27 (2), 139-146, 2006.
- [4] W. Guo, The Theory of Classes of Groups, Science Press-Kluwer Academic Publishers,
Beijing-New York-Dordrecht-Boston-london, 2000.
- [5] X. Guo and K. P. Shum, Cover-avoidance properties and the structure of finite groups,
J. Pure Appl. Algebra 181 (2-3), 297-308, 2003.
- [6] X. Guo, J. Wang and K. P. Shum, On semi-cover-avoiding maximal subgroups and
solvability of finite groups, Comm. Algebra, 34 (9), 3235-3244, 2006.
- [7] B. Huppert, Normalteiler und maximale Untergruppen endlicher Gruppen, Math. Z.
60, 409-434, 1954.
- [8] M. N. Konovalova, V. S. Monakhov and I. L. Sokhor, On 2-maximal subgroups of
finite groups, Comm. Algebra, 50 (1), 96-103, 2022.
- [9] S. Li, H. Liu and D. Liu, The solvability between finite groups and semi-subnormalcover-
avoidance subgroups, J. Math. 37 (6), 1303-1308, 2017.
- [10] L. Miao and J. Zhang, On a class of non-solvable groups, J. Algebra, 496, 1-10, 2018.
- [11] Y. Wang, L. Miao, Z. Gao and W. Liu, The influence of second maximal subgroups
on the generalized p-solvability of finite groups, Comm. Algebra, 50 (6), 2584-2591,
2022.
Year 2024,
, 333 - 341, 23.04.2024
Xindan Chen
,
Tingting Qıu
,
Juping Tang
Project Number
Grant \# 11871062;Grant\ # 11701223;Grant\ # 12011530061;Grant\ # BK20181451
References
- [1] M. Bianchi, A. G. B. Mauri and P. Hauck, On finite groups with nilpotent Sylownormalizers,
Arch. Math. 47 (3), 193-197, 1986.
- [2] K. Doerk and T. Hawkes, Finite Soluble Groups, Walter de Gruyter, Berlin-New York,
1992.
- [3] Y. Fan, X. Guo and K. P. Shum, Remarks on two generalizations of normality of
subgroups, Chinese J. Contemp. Math. 27 (2), 139-146, 2006.
- [4] W. Guo, The Theory of Classes of Groups, Science Press-Kluwer Academic Publishers,
Beijing-New York-Dordrecht-Boston-london, 2000.
- [5] X. Guo and K. P. Shum, Cover-avoidance properties and the structure of finite groups,
J. Pure Appl. Algebra 181 (2-3), 297-308, 2003.
- [6] X. Guo, J. Wang and K. P. Shum, On semi-cover-avoiding maximal subgroups and
solvability of finite groups, Comm. Algebra, 34 (9), 3235-3244, 2006.
- [7] B. Huppert, Normalteiler und maximale Untergruppen endlicher Gruppen, Math. Z.
60, 409-434, 1954.
- [8] M. N. Konovalova, V. S. Monakhov and I. L. Sokhor, On 2-maximal subgroups of
finite groups, Comm. Algebra, 50 (1), 96-103, 2022.
- [9] S. Li, H. Liu and D. Liu, The solvability between finite groups and semi-subnormalcover-
avoidance subgroups, J. Math. 37 (6), 1303-1308, 2017.
- [10] L. Miao and J. Zhang, On a class of non-solvable groups, J. Algebra, 496, 1-10, 2018.
- [11] Y. Wang, L. Miao, Z. Gao and W. Liu, The influence of second maximal subgroups
on the generalized p-solvability of finite groups, Comm. Algebra, 50 (6), 2584-2591,
2022.