Research Article
BibTex RIS Cite

Redundancy, weaving and $Q$-dual of $K$-g-frames in Hilbert spaces

Year 2024, , 595 - 607, 27.06.2024
https://doi.org/10.15672/hujms.1130102

Abstract

In this paper we study exact $K$-g-frames, weaving of $K$-g-frames and $Q$-duals of g-frames in Hilbert spaces. We present a sufficient condition for a g-Bessel sequence to be an exact $K$-g-frame. Given two woven pairs $(\Lambda, \Gamma)$ and $(\Theta, \Delta)$ of $K$-g-frames, we investigate under what conditions $\Lambda$ can be $K$-g-woven with $\Delta$ if $\Gamma$ is $K$-g-woven with $\Theta$. Given a $K$-g-frame $\Lambda$ and its dual $\Gamma$ on $\mathcal{U}$, we construct a new pair based on $\Lambda$ and $\Gamma$ so that they are woven on a subspace $R(K)$ of $\mathcal{U}$. Finally, we characterize the $Q$-dual of g-frames using their induced sequences.

Supporting Institution

Natural Science Foundation of Fujian Province, China; Xiamen University of Technology

Project Number

2020J01267 and 2021J011192; 40199071 and 50419004

References

  • [1] E. Andruchow, J. Antezana and G. Corach, Topology and smooth structure for pseudoframes, Integr. Equat. Oper. Th., 67, 451-466, 2010.
  • [2] M.M. Azandaryani, On the approximate duality of g-frames and fusion frames, U.P.B. Sci. Bull. Series A, 79 (2), 83-94, 2017.
  • [3] M.M. Azandaryani, An operator theory approach to the approximate duality of Hilbert space frames, J. Math. Anal. Appl. 489, 124177, 2020.
  • [4] T. Bemrose and K. Grochenig et al. Weaving frames, Oper. Matrices, 10 (4), 1093- 1116, 2016.
  • [5] P.G. Casazza and G. Kutyniok, Frames of subspaces, Contemp. Math., Amer. Math. Soc., Providence, RI, 345, 87-113, 2004.
  • [6] P.G. Casazza, G. Kutyniok and Li, S. Fusion frames and distributed processing, Appl. Comput. Harmon. Anal. 25 (1), 114-132, 2008.
  • [7] O. Christensen, An introduction to frames and Riesz bases, Second edition, Birkhäuser, Boston, 2015.
  • [8] Deepshikha and A. Samanta, On weaving generalized frames and generalized Riesz bases, Bull. Malays. Math. Sci. Soc. 44, 3361-3375, 2021.
  • [9] Deepshikha, L.K. Vashisht and G. Verma, Generalized weaving frames for operators in Hilbert spaces, Results Math. 72 (3), 1369-1391, 2017.
  • [10] L. Găvruţa, Frames for operators, Appl. Comp. Harm. Anal. 32, 139-144, 2012.
  • [11] X.X. Guo, Joint similarities and parameterizations for dilations of dual g-frame pairs in Hilbert spaces, Acta Math. Sin. ( Engl. Ser.) 35, 1827-1840, 2019.
  • [12] S.B. Heineken, P.M. Morillas and A.M. Benavente, et al., Dual fusion frames, Arch. Math., 103, 355-365, 2014.
  • [13] A. Khosravi and M.M. Azandaryani, Approximate duality of g-frames in Hilbert spaces, Acta Math. Sci. 34B (3), 639-652, 2014.
  • [14] A. Khosravi and J.S. Banyarani, Weaving g-frames and weaving fusion frames, Bull. Malays. Math. Sci. Soc. 42, 3111-3129, 2019.
  • [15] J.Z. Li and Y.C. Zhu, Exact g-frames in Hilbert spaces, J. Math. Anal. Appl. 374 (1), 201-209, 2011.
  • [16] E.A. Moghaddam and A.A. Arefijamaal, On excesses and duality in woven frames, Bull. Malays. Math. Sci. Soc. 44, 3361-3375, 2021.
  • [17] W.C. Sun, G-frames and g-Riesz bases, J. Math. Anal. Appl. 322, 437-452, 2006.
  • [18] X.C. Xiao and Y.C. Zhu, Exact K-g-frames in Hilbert spaces, Results Math. 72 (3), 1329-1339, 2017.
  • [19] X.C. Xiao, Y.C. Zhu and L. Găvruţa, Some properties of K-frames in Hilbert spaces, Results Math. 63, 1243-1255, 2013.
  • [20] X.C. Xiao, Y.C. Zhu and Z.B. Shu et al., G-frames with bounded linear operators, Rocky Mountain J. Math. 45 (2), 675-693, 2015.
  • [21] X.C. Xiao, K. Yan and G.P. Zhao et al., Tight K-frames and weaving of K-frames, J. Pseudo-Differ. Oper. Appl. 12 (1), 1, 2021.
  • [22] X.C. Xiao, G.R. Zhou and Y.C. Zhu, Weaving of K-g-frames in Hilbert spaces, ScienceAsia, 45 (3), 285-291, 2019.
  • [23] Z.Q. Xiang, On K-duality and redundancy of K-g-frames, Ric. Mat., 2021. https://doi.org/10.1007/s11587-021-00600-5
  • [24] Z.Q. Xiang, Some new results of weaving K-frames in Hilbert spaces, Numer. Funct. Anal. Optim. 42, 409-429, 2021.
  • [25] Y.C. Zhu,Characterizations of g-frames and g-Riesz bases in Hilbert spaces, Acta Math. Sin. (Engl. Ser.) 24 (10), 1727-1736, 2008.
Year 2024, , 595 - 607, 27.06.2024
https://doi.org/10.15672/hujms.1130102

Abstract

Project Number

2020J01267 and 2021J011192; 40199071 and 50419004

References

  • [1] E. Andruchow, J. Antezana and G. Corach, Topology and smooth structure for pseudoframes, Integr. Equat. Oper. Th., 67, 451-466, 2010.
  • [2] M.M. Azandaryani, On the approximate duality of g-frames and fusion frames, U.P.B. Sci. Bull. Series A, 79 (2), 83-94, 2017.
  • [3] M.M. Azandaryani, An operator theory approach to the approximate duality of Hilbert space frames, J. Math. Anal. Appl. 489, 124177, 2020.
  • [4] T. Bemrose and K. Grochenig et al. Weaving frames, Oper. Matrices, 10 (4), 1093- 1116, 2016.
  • [5] P.G. Casazza and G. Kutyniok, Frames of subspaces, Contemp. Math., Amer. Math. Soc., Providence, RI, 345, 87-113, 2004.
  • [6] P.G. Casazza, G. Kutyniok and Li, S. Fusion frames and distributed processing, Appl. Comput. Harmon. Anal. 25 (1), 114-132, 2008.
  • [7] O. Christensen, An introduction to frames and Riesz bases, Second edition, Birkhäuser, Boston, 2015.
  • [8] Deepshikha and A. Samanta, On weaving generalized frames and generalized Riesz bases, Bull. Malays. Math. Sci. Soc. 44, 3361-3375, 2021.
  • [9] Deepshikha, L.K. Vashisht and G. Verma, Generalized weaving frames for operators in Hilbert spaces, Results Math. 72 (3), 1369-1391, 2017.
  • [10] L. Găvruţa, Frames for operators, Appl. Comp. Harm. Anal. 32, 139-144, 2012.
  • [11] X.X. Guo, Joint similarities and parameterizations for dilations of dual g-frame pairs in Hilbert spaces, Acta Math. Sin. ( Engl. Ser.) 35, 1827-1840, 2019.
  • [12] S.B. Heineken, P.M. Morillas and A.M. Benavente, et al., Dual fusion frames, Arch. Math., 103, 355-365, 2014.
  • [13] A. Khosravi and M.M. Azandaryani, Approximate duality of g-frames in Hilbert spaces, Acta Math. Sci. 34B (3), 639-652, 2014.
  • [14] A. Khosravi and J.S. Banyarani, Weaving g-frames and weaving fusion frames, Bull. Malays. Math. Sci. Soc. 42, 3111-3129, 2019.
  • [15] J.Z. Li and Y.C. Zhu, Exact g-frames in Hilbert spaces, J. Math. Anal. Appl. 374 (1), 201-209, 2011.
  • [16] E.A. Moghaddam and A.A. Arefijamaal, On excesses and duality in woven frames, Bull. Malays. Math. Sci. Soc. 44, 3361-3375, 2021.
  • [17] W.C. Sun, G-frames and g-Riesz bases, J. Math. Anal. Appl. 322, 437-452, 2006.
  • [18] X.C. Xiao and Y.C. Zhu, Exact K-g-frames in Hilbert spaces, Results Math. 72 (3), 1329-1339, 2017.
  • [19] X.C. Xiao, Y.C. Zhu and L. Găvruţa, Some properties of K-frames in Hilbert spaces, Results Math. 63, 1243-1255, 2013.
  • [20] X.C. Xiao, Y.C. Zhu and Z.B. Shu et al., G-frames with bounded linear operators, Rocky Mountain J. Math. 45 (2), 675-693, 2015.
  • [21] X.C. Xiao, K. Yan and G.P. Zhao et al., Tight K-frames and weaving of K-frames, J. Pseudo-Differ. Oper. Appl. 12 (1), 1, 2021.
  • [22] X.C. Xiao, G.R. Zhou and Y.C. Zhu, Weaving of K-g-frames in Hilbert spaces, ScienceAsia, 45 (3), 285-291, 2019.
  • [23] Z.Q. Xiang, On K-duality and redundancy of K-g-frames, Ric. Mat., 2021. https://doi.org/10.1007/s11587-021-00600-5
  • [24] Z.Q. Xiang, Some new results of weaving K-frames in Hilbert spaces, Numer. Funct. Anal. Optim. 42, 409-429, 2021.
  • [25] Y.C. Zhu,Characterizations of g-frames and g-Riesz bases in Hilbert spaces, Acta Math. Sin. (Engl. Ser.) 24 (10), 1727-1736, 2008.
There are 25 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Xiang Chun Xiao 0000-0002-0030-2688

Guo Ping Zhao 0000-0002-1832-9264

Guorong Zhou 0000-0002-8063-5043

Project Number 2020J01267 and 2021J011192; 40199071 and 50419004
Early Pub Date January 10, 2024
Publication Date June 27, 2024
Published in Issue Year 2024

Cite

APA Xiao, X. C., Zhao, G. P., & Zhou, G. (2024). Redundancy, weaving and $Q$-dual of $K$-g-frames in Hilbert spaces. Hacettepe Journal of Mathematics and Statistics, 53(3), 595-607. https://doi.org/10.15672/hujms.1130102
AMA Xiao XC, Zhao GP, Zhou G. Redundancy, weaving and $Q$-dual of $K$-g-frames in Hilbert spaces. Hacettepe Journal of Mathematics and Statistics. June 2024;53(3):595-607. doi:10.15672/hujms.1130102
Chicago Xiao, Xiang Chun, Guo Ping Zhao, and Guorong Zhou. “Redundancy, Weaving and $Q$-Dual of $K$-G-Frames in Hilbert Spaces”. Hacettepe Journal of Mathematics and Statistics 53, no. 3 (June 2024): 595-607. https://doi.org/10.15672/hujms.1130102.
EndNote Xiao XC, Zhao GP, Zhou G (June 1, 2024) Redundancy, weaving and $Q$-dual of $K$-g-frames in Hilbert spaces. Hacettepe Journal of Mathematics and Statistics 53 3 595–607.
IEEE X. C. Xiao, G. P. Zhao, and G. Zhou, “Redundancy, weaving and $Q$-dual of $K$-g-frames in Hilbert spaces”, Hacettepe Journal of Mathematics and Statistics, vol. 53, no. 3, pp. 595–607, 2024, doi: 10.15672/hujms.1130102.
ISNAD Xiao, Xiang Chun et al. “Redundancy, Weaving and $Q$-Dual of $K$-G-Frames in Hilbert Spaces”. Hacettepe Journal of Mathematics and Statistics 53/3 (June 2024), 595-607. https://doi.org/10.15672/hujms.1130102.
JAMA Xiao XC, Zhao GP, Zhou G. Redundancy, weaving and $Q$-dual of $K$-g-frames in Hilbert spaces. Hacettepe Journal of Mathematics and Statistics. 2024;53:595–607.
MLA Xiao, Xiang Chun et al. “Redundancy, Weaving and $Q$-Dual of $K$-G-Frames in Hilbert Spaces”. Hacettepe Journal of Mathematics and Statistics, vol. 53, no. 3, 2024, pp. 595-07, doi:10.15672/hujms.1130102.
Vancouver Xiao XC, Zhao GP, Zhou G. Redundancy, weaving and $Q$-dual of $K$-g-frames in Hilbert spaces. Hacettepe Journal of Mathematics and Statistics. 2024;53(3):595-607.