Operator inequalities via accretive transforms
Year 2024,
, 40 - 52, 29.02.2024
İbrahim Halil Gümüş
,
Hamid Reza Moradı
,
Mohammad Sababheh
Abstract
In this article, we employ certain properties of the transform $C_{M,m}(A)=(MI-A^*)(A-mI)$ to obtain new inequalities for the bounded linear operator $A$ on a complex Hilbert space $\mathcal{H}$. In particular, we obtain new relations among $|A|,|A^*|,|\mathfrak{R}A|$ and $|\mathfrak{I}A|$. Further numerical radius inequalities that extend some known inequalities will be presented too.
References
- [1] Y. Bedrani, F. Kittaneh and M. Sababheh, From positive to accretive matrices, Positivity
25, 1601–1629, 2021.
- [2] Y. Bedrani, F. Kittaneh and M. Sababheh, Numerical radii of accretive matrices,
Linear Multilinear Algebra 69, 957–970, 2021.
- [3] Y. Bedrani, F. Kittaneh and M. Sababheh, On the weighted geometric mean of accretive
matrices, Ann. Funct. Anal. 12 (1), 2, 2021.
- [4] Y. Bedrani, F. Kittaneh and M. Sababheh, Accretive matrices and matrix convex
functions, Results Math. 77, 52, 2022.
- [5] R. Bhatia, Matrix analysis, Springer-Verlag, New York, 1997.
- [6] R. Bhatia, Positive definite matrices, Princeton Univ. Press, Princeton, 2007.
- [7] P. Bhunia, S.S. Dragomir, M.S. Moslehian and K. Paul, Lectures on numerical radius
inequalities, Infosys Science Foundation Series in Mathematical Sciences, Springer
Cham, 2022.
- [8] R. Bhatia and F. Kittaneh, Notes on matrix arithmetic-geometric mean inequalities,
Linear Algebra Appl. 308, 203–211, 2000.
- [9] M.D. Choi, A Schwarz inequality for positive linear maps on $C^*$-algebras, Illinois J.
Math. 18, 565–574, 1974.
- [10] C. Davis, A Schwartz inequality for convex operator functions, Proc. Amer. Math.
Soc. 8, 42–44, 1957.
- [11] S.S. Dragomir, New inequalities of the Kantorovich type for bounded linear operators
in Hilbert spaces, Linear Algebra Appl. 428, 2750–2760, 2008.
- [12] S.S. Dragomir, Inequalities for the numerical radius of linear operators in Hilbert
spaces, Springer Briefs in Mathematics, Springer Cham, 2013.
- [13] S. Drury, Principal powers of matrices with positive definite real part, Linear Multilinear
Algebra 63, 296–301, 2015.
- [14] S. Drury and M. Lin, Singular value inequalities for matrices with numerical ranges
in a sector, Oper. Matrices 8, 1143–1148, 2014.
- [15] C.-K. Fong and J.A.R. Holbrook, Unitarily invariant operator norms, Can. J. Math.
35, 274–299, 1983.
- [16] T. Furuta, J. Micic Hot, J. Pecaric and Y. Seo, Mond-Pecaric method in operator
inequalities, Monographs in Inequalities 1, Element, Zagreb, 2005.
- [17] K.E. Gustafson and D.K.M. Rao, Numerical range, Springer, New York, 1997.
- [18] P.R. Halmos, A Hilbert space problem book, 2nd ed., Springer, New York, 1982.
- [19] R.A. Horn and C.R. Johnson, Topics in matrix analysis, Cambridge University Press,
1991.
- [20] F. Kittaneh, Numerical radius inequalities for Hilbert space operators, Studia Math.
168, 73–80, 2005.
- [21] M. Lin, Some inequalities for sector matrices. Oper. Matrices 10, 915–921, 2016.
- [22] H.R. Moradi, S. Furuichi and M. Sababheh, Some operator inequalities
via convexity, Linear Multilinear Algebra 70 (22), 7740–7752, 2022. Doi:
10.1080/03081087.2021.2006592.
- [23] H.R. Moradi, M.E. Omidvar, I.H. Gümüs and R. Naseri, A note on some inequalities
for positive linear maps, Linear Multilinear Algebra 66 (7), 1449–1460, 2018.
- [24] M. Niezgoda, Accretive operators and Cassels inequality, Linear Algebra Appl. 433,
136–142, 2010.
- [25] M. Raïssouli, M.S. Moslehian and S. Furuichi, Relative entropy and Tsallis entropy
of two accretive operators, C. R. Acad. Sci. Paris Ser. I 355, 687–693, 2017.
- [26] P.Y. Wu and H.-L. Gau, Numerical ranges of Hilbert space operators, Encyclopedia
of Mathematics and its Applications, 179, Cambridge University Press, Cambridge,
2021.
Year 2024,
, 40 - 52, 29.02.2024
İbrahim Halil Gümüş
,
Hamid Reza Moradı
,
Mohammad Sababheh
References
- [1] Y. Bedrani, F. Kittaneh and M. Sababheh, From positive to accretive matrices, Positivity
25, 1601–1629, 2021.
- [2] Y. Bedrani, F. Kittaneh and M. Sababheh, Numerical radii of accretive matrices,
Linear Multilinear Algebra 69, 957–970, 2021.
- [3] Y. Bedrani, F. Kittaneh and M. Sababheh, On the weighted geometric mean of accretive
matrices, Ann. Funct. Anal. 12 (1), 2, 2021.
- [4] Y. Bedrani, F. Kittaneh and M. Sababheh, Accretive matrices and matrix convex
functions, Results Math. 77, 52, 2022.
- [5] R. Bhatia, Matrix analysis, Springer-Verlag, New York, 1997.
- [6] R. Bhatia, Positive definite matrices, Princeton Univ. Press, Princeton, 2007.
- [7] P. Bhunia, S.S. Dragomir, M.S. Moslehian and K. Paul, Lectures on numerical radius
inequalities, Infosys Science Foundation Series in Mathematical Sciences, Springer
Cham, 2022.
- [8] R. Bhatia and F. Kittaneh, Notes on matrix arithmetic-geometric mean inequalities,
Linear Algebra Appl. 308, 203–211, 2000.
- [9] M.D. Choi, A Schwarz inequality for positive linear maps on $C^*$-algebras, Illinois J.
Math. 18, 565–574, 1974.
- [10] C. Davis, A Schwartz inequality for convex operator functions, Proc. Amer. Math.
Soc. 8, 42–44, 1957.
- [11] S.S. Dragomir, New inequalities of the Kantorovich type for bounded linear operators
in Hilbert spaces, Linear Algebra Appl. 428, 2750–2760, 2008.
- [12] S.S. Dragomir, Inequalities for the numerical radius of linear operators in Hilbert
spaces, Springer Briefs in Mathematics, Springer Cham, 2013.
- [13] S. Drury, Principal powers of matrices with positive definite real part, Linear Multilinear
Algebra 63, 296–301, 2015.
- [14] S. Drury and M. Lin, Singular value inequalities for matrices with numerical ranges
in a sector, Oper. Matrices 8, 1143–1148, 2014.
- [15] C.-K. Fong and J.A.R. Holbrook, Unitarily invariant operator norms, Can. J. Math.
35, 274–299, 1983.
- [16] T. Furuta, J. Micic Hot, J. Pecaric and Y. Seo, Mond-Pecaric method in operator
inequalities, Monographs in Inequalities 1, Element, Zagreb, 2005.
- [17] K.E. Gustafson and D.K.M. Rao, Numerical range, Springer, New York, 1997.
- [18] P.R. Halmos, A Hilbert space problem book, 2nd ed., Springer, New York, 1982.
- [19] R.A. Horn and C.R. Johnson, Topics in matrix analysis, Cambridge University Press,
1991.
- [20] F. Kittaneh, Numerical radius inequalities for Hilbert space operators, Studia Math.
168, 73–80, 2005.
- [21] M. Lin, Some inequalities for sector matrices. Oper. Matrices 10, 915–921, 2016.
- [22] H.R. Moradi, S. Furuichi and M. Sababheh, Some operator inequalities
via convexity, Linear Multilinear Algebra 70 (22), 7740–7752, 2022. Doi:
10.1080/03081087.2021.2006592.
- [23] H.R. Moradi, M.E. Omidvar, I.H. Gümüs and R. Naseri, A note on some inequalities
for positive linear maps, Linear Multilinear Algebra 66 (7), 1449–1460, 2018.
- [24] M. Niezgoda, Accretive operators and Cassels inequality, Linear Algebra Appl. 433,
136–142, 2010.
- [25] M. Raïssouli, M.S. Moslehian and S. Furuichi, Relative entropy and Tsallis entropy
of two accretive operators, C. R. Acad. Sci. Paris Ser. I 355, 687–693, 2017.
- [26] P.Y. Wu and H.-L. Gau, Numerical ranges of Hilbert space operators, Encyclopedia
of Mathematics and its Applications, 179, Cambridge University Press, Cambridge,
2021.