Research Article
BibTex RIS Cite

Algebraic theory of degenerate general bivariate Appell polynomials and related interpolation hints

Year 2024, , 1 - 21, 29.02.2024
https://doi.org/10.15672/hujms.1183047

Abstract

The algebraic study of polynomials based on determinant representations is important in many fields of mathematics, ranging from algebraic geometry to optimization. The motivation to introduce determinant expressions of special polynomials comes from the fact that they are useful in scientific computing in solving systems of equations effectively. It is critical for this application to have determinant representations not just for single valued polynomials but also for bivariate polynomials. In this article, a family of degenerate general bivariate Appell polynomials is introduced. Several different explicit representations, recurrence relations, and addition theorems are established for this family. With the aid of different recurrence relations, we establish the determinant expressions for the degenerate general bivariate Appell polynomials. We also establish determinant definitions for degenerate general polynomials. Several examples are framed as the applications of this family and their graphical representations are shown. As concluding remarks, we propose a linear interpolation problem for these polynomials and some hints are provided.

References

  • [1] P. Appell, Sur une classe de polynˆomes, Ann. Sci. ´E cole. Norm. Sup. 9, 119-144, 1880.
  • [2] D. Bedoya, M. Ortega, W. Ramírez and A. Urieles, New biparametric families of Apostol-Frobenius-Euler polynomials of level m, Mat. Stud. 55, 10-23, 2021.
  • [3] G. Bretti, C. Cesarano and P. Ricci, Laguerre type exponentials and generalized Appell polynomials, Comput. Math. Appl. 48, 833-839, 2004.
  • [4] L. Carlitz, A degenerate Staudt-Clausen theorem, Arch. Math. (Basel) 7, 28-33, 1956.
  • [5] L. Carlitz, Degenerate Stirling, Bernoulli and Eulerian numbers, Util. Math. 15, 51- 88, 1979.
  • [6] C. Cesarano and W. Ramírez, Some new classes of degenerated generalized Apostol- Bernoulli, Apostol-Euler and Apostol-Genocchi polynomials, Carpathian Math. Publ., 4 (2), 2022.
  • [7] C. Cesarano, W. Ramírez and S. Diaz, New results for degenerated generalized Apostol-Bernoulli, Apostol-Euler and Apostol- Genocchi polynomials, WSEAS Transactions on Mathematics 21, 604-608, 2022.
  • [8] C. Cesarano, W. Ramírez and S. Khan, A new class of degenerate Apostoltype Hermite polynomials and applications, Dolomites Res. Notes Approx. 15, 110, 2022.
  • [9] F.A. Costabile, M.I. Gualtieri and A. Napoli, Bivariate general Appell interpolation problem, Numer. Algorithms 91, 531-556, 2022. doi: 10.1007/s11075-022-01272-4.
  • [10] F.A. Costabile, M.I. Gualtieri and A. Napoli, General bivariate Appell polynomials via matrix calculus and related interpolation hints, Mathematics 964 (9), 2021.
  • [11] F.A. Costabile and E. Longo, The Appell interpolation problem, J. Comput. Appl. Math. 236, 1024-1032, 2011.
  • [12] F.A. Costabile and E. Longo, Δh - Appell sequences and related interpolation problem, Numer. Algorithms 63 (1), 165-186, 2013. doi: 10.1007/s11075-012-9619-1.
  • [13] S. Khan and N. Raza, General-Appell polynomials within the context of monomiality principle, Int. J. Anal. 2013, Art. ID. 328032, 2013.
  • [14] D. Kim, A class of Sheffer sequences of some complex polynomials and their degenerate types, Symmetry 7, 1064-1080, 2019.
  • [15] D. Kim, A note on the degenerate type of complex Appell polynomials, Symmetry 11, 1339-1352, 2019.
  • [16] W.A. Khan, Degenerate Hermite-Bernoulli numbers and polynomials of the second kind, Prespacetime Journal 7 (9), 1200-1208, 2016.
  • [17] M. Riyasat, Generalized 3D extension of degenerate Fubini polynomials and their applications, submitted for publication.
  • [18] M. Riyasat, T. Nahid and S. Khan, An algebraic approach to degenerate Appell polynomials and their hybrid forms via determinants, Acta Math. Sci. 43 (2), 719-735, 2023.
Year 2024, , 1 - 21, 29.02.2024
https://doi.org/10.15672/hujms.1183047

Abstract

References

  • [1] P. Appell, Sur une classe de polynˆomes, Ann. Sci. ´E cole. Norm. Sup. 9, 119-144, 1880.
  • [2] D. Bedoya, M. Ortega, W. Ramírez and A. Urieles, New biparametric families of Apostol-Frobenius-Euler polynomials of level m, Mat. Stud. 55, 10-23, 2021.
  • [3] G. Bretti, C. Cesarano and P. Ricci, Laguerre type exponentials and generalized Appell polynomials, Comput. Math. Appl. 48, 833-839, 2004.
  • [4] L. Carlitz, A degenerate Staudt-Clausen theorem, Arch. Math. (Basel) 7, 28-33, 1956.
  • [5] L. Carlitz, Degenerate Stirling, Bernoulli and Eulerian numbers, Util. Math. 15, 51- 88, 1979.
  • [6] C. Cesarano and W. Ramírez, Some new classes of degenerated generalized Apostol- Bernoulli, Apostol-Euler and Apostol-Genocchi polynomials, Carpathian Math. Publ., 4 (2), 2022.
  • [7] C. Cesarano, W. Ramírez and S. Diaz, New results for degenerated generalized Apostol-Bernoulli, Apostol-Euler and Apostol- Genocchi polynomials, WSEAS Transactions on Mathematics 21, 604-608, 2022.
  • [8] C. Cesarano, W. Ramírez and S. Khan, A new class of degenerate Apostoltype Hermite polynomials and applications, Dolomites Res. Notes Approx. 15, 110, 2022.
  • [9] F.A. Costabile, M.I. Gualtieri and A. Napoli, Bivariate general Appell interpolation problem, Numer. Algorithms 91, 531-556, 2022. doi: 10.1007/s11075-022-01272-4.
  • [10] F.A. Costabile, M.I. Gualtieri and A. Napoli, General bivariate Appell polynomials via matrix calculus and related interpolation hints, Mathematics 964 (9), 2021.
  • [11] F.A. Costabile and E. Longo, The Appell interpolation problem, J. Comput. Appl. Math. 236, 1024-1032, 2011.
  • [12] F.A. Costabile and E. Longo, Δh - Appell sequences and related interpolation problem, Numer. Algorithms 63 (1), 165-186, 2013. doi: 10.1007/s11075-012-9619-1.
  • [13] S. Khan and N. Raza, General-Appell polynomials within the context of monomiality principle, Int. J. Anal. 2013, Art. ID. 328032, 2013.
  • [14] D. Kim, A class of Sheffer sequences of some complex polynomials and their degenerate types, Symmetry 7, 1064-1080, 2019.
  • [15] D. Kim, A note on the degenerate type of complex Appell polynomials, Symmetry 11, 1339-1352, 2019.
  • [16] W.A. Khan, Degenerate Hermite-Bernoulli numbers and polynomials of the second kind, Prespacetime Journal 7 (9), 1200-1208, 2016.
  • [17] M. Riyasat, Generalized 3D extension of degenerate Fubini polynomials and their applications, submitted for publication.
  • [18] M. Riyasat, T. Nahid and S. Khan, An algebraic approach to degenerate Appell polynomials and their hybrid forms via determinants, Acta Math. Sci. 43 (2), 719-735, 2023.
There are 18 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Subuhi Khan 0000-0002-9084-8077

Mehnaz Haneef 0000-0002-6621-1017

Mumtaz Riyasat 0000-0001-6223-8741

Early Pub Date January 10, 2024
Publication Date February 29, 2024
Published in Issue Year 2024

Cite

APA Khan, S., Haneef, M., & Riyasat, M. (2024). Algebraic theory of degenerate general bivariate Appell polynomials and related interpolation hints. Hacettepe Journal of Mathematics and Statistics, 53(1), 1-21. https://doi.org/10.15672/hujms.1183047
AMA Khan S, Haneef M, Riyasat M. Algebraic theory of degenerate general bivariate Appell polynomials and related interpolation hints. Hacettepe Journal of Mathematics and Statistics. February 2024;53(1):1-21. doi:10.15672/hujms.1183047
Chicago Khan, Subuhi, Mehnaz Haneef, and Mumtaz Riyasat. “Algebraic Theory of Degenerate General Bivariate Appell Polynomials and Related Interpolation Hints”. Hacettepe Journal of Mathematics and Statistics 53, no. 1 (February 2024): 1-21. https://doi.org/10.15672/hujms.1183047.
EndNote Khan S, Haneef M, Riyasat M (February 1, 2024) Algebraic theory of degenerate general bivariate Appell polynomials and related interpolation hints. Hacettepe Journal of Mathematics and Statistics 53 1 1–21.
IEEE S. Khan, M. Haneef, and M. Riyasat, “Algebraic theory of degenerate general bivariate Appell polynomials and related interpolation hints”, Hacettepe Journal of Mathematics and Statistics, vol. 53, no. 1, pp. 1–21, 2024, doi: 10.15672/hujms.1183047.
ISNAD Khan, Subuhi et al. “Algebraic Theory of Degenerate General Bivariate Appell Polynomials and Related Interpolation Hints”. Hacettepe Journal of Mathematics and Statistics 53/1 (February 2024), 1-21. https://doi.org/10.15672/hujms.1183047.
JAMA Khan S, Haneef M, Riyasat M. Algebraic theory of degenerate general bivariate Appell polynomials and related interpolation hints. Hacettepe Journal of Mathematics and Statistics. 2024;53:1–21.
MLA Khan, Subuhi et al. “Algebraic Theory of Degenerate General Bivariate Appell Polynomials and Related Interpolation Hints”. Hacettepe Journal of Mathematics and Statistics, vol. 53, no. 1, 2024, pp. 1-21, doi:10.15672/hujms.1183047.
Vancouver Khan S, Haneef M, Riyasat M. Algebraic theory of degenerate general bivariate Appell polynomials and related interpolation hints. Hacettepe Journal of Mathematics and Statistics. 2024;53(1):1-21.