Research Article
BibTex RIS Cite

Error bounds for a class of history-dependent variational inequalities controlled by $\mathcal{D}$-gap~functions

Year 2023, , 1550 - 1566, 03.11.2023
https://doi.org/10.15672/hujms.1183739

Abstract

In the present paper, we are concerned with investigating error bounds for history-dependent variational inequalities controlled by the difference gap (for brevity, $\mathcal{D}$-gap) functions. First, we recall a class of elliptic variational inequalities involving the history-dependent operators (for brevity, HDVI). Then, we introduce a new concept of gap functions to the HDVI and propose the regularized gap function for the HDVI via the optimality condition for the concerning minimization problem. Consequently, the $\mathcal{D}$-gap function for the HDVI depends on these regularized gap functions is established. Finally, error bounds for the HDVI controlled by the regularized gap function and the $\mathcal{D}$-gap function are derived under suitable conditions.

References

  • [1] G. Bigi and M. Passacantando, D-gap functions and descent techniques for solving equilibrium problems, J. Global Optim. 62 (1), 183–203, 2015.
  • [2] J.X. Cen, A.A. Khan, D. Motreanu and S.D. Zeng, Inverse problems for generalized quasi-variational inequalities with application to elliptic mixed boundary value systems, Inverse Problems 38, 065006, 2022.
  • [3] J.X. Cen, V.T. Nguyen and S.D. Zeng, Gap functions and global error bounds for history-dependent variational-hemivariational inequalities, J. Nonlinear Var. Anal. 6, 461–481, 2022.
  • [4] C. Charitha, A note on D-gap functions for equilibrium problems, Optimization, 62 (2), 211–226, 2013.
  • [5] Z. Denkowski, S. Migórski and N.S. Papageorgiou, An Introduction to Nonlinear Analysis: Theory, Kluwer Academic/Plenum Publishers, Boston, Dordrecht, London, New York, 2003.
  • [6] Z. Denkowski, S. Migórski and N.S. Papageorgiou, An Introduction to Nonlinear Analysis: Applications, Kluwer Academic/Plenum Publishers, Boston, Dordrecht, London, New York, 2003.
  • [7] M. Fukushima, Equivalent differentiable optimization problems and descent methods for asymmetric variational inequality problems, Math. Program. 53 (4), 99–110, 1992.
  • [8] J. Haslinger, M. Miettinen and P.D. Panagiotopoulos, Finite Element Method for Hemivariational Inequalities: Theory, Methods and Applications. Kluwer Academic Publishers, Boston, 1999.
  • [9] N.V. Hung, S. Migórski, V.M. Tam and S. Zeng, Gap functions and error bounds for variational-hemivariational inequalities, Acta. Appl. Math. 169, 691–709, 2020.
  • [10] N.V. Hung and V.M. Tam, Error bound analysis of the D-gap functions for a class of elliptic variational inequalities with applications to frictional contact mechanics, Z. Angew. Math. Phys. 72, 173, 2021.
  • [11] N.V. Hung, V.M. Tam and B. Dumitru, Regularized gap functions and error bounds for split mixed vector quasivariational inequality problems, Math. Methods Appl. Sci. 43, 4614–4626, 2020.
  • [12] N.V. Hung, V.M. Tam and Y. Zhou, A new class of strong mixed vector GQVIP- generalized quasi-variational inequality problems in fuzzy environment with regularized gap functions based error bounds, J Comput Appl Math. 381, 113055, 2021.
  • [13] N.V. Hung, X. Qin, V.M. Tam and J.C. Yao, Difference gap functions and global error bounds for random mixed equilibrium problems, Filomat 34, 2739–2761, 2020.
  • [14] I.V. Konnov and O.V. Pinyagina, D-gap functions for a class of equilibrium problems in Banach spaces, Comput. Methods Appl. Math. 3 (2), 274–286, 2003.
  • [15] E.S. Levitin and B.T. Polyak, Constrained minimization methods, Comput. Math. Math. Phys. 6, 1–50, 1996.
  • [16] G. Li and K.F. Ng, Error bounds of generalized D-gap functions for nonsmooth and nonmonotone variational inequality problems, SIAM J. Optim. 20 (2), 667–690, 2009.
  • [17] G. Li, C. Tang and Z. Wei, Error bound results for generalized D-gap functions of nonsmooth variational inequality problems, J. Comput. Appl. Math. 233 (11), 2795– 2806, 2010.
  • [18] Z.H. Liu, D. Motreanu and S.D. Zeng, Generalized penalty and regularization method for differential variational-hemivariational inequalities, SIAM J. Optim. 31, 1158– 1183, 2021.
  • [19] Z.Q. Luo and P. Tseng, Error bounds and convergence analysis of feasible descent methods: A general approach, Ann. Oper. Res. 46, 157–178, 1993.
  • [20] S. Migórski, Y. Bai and S.D. Zeng, A new class of history-dependent quasi variational-hemivariational inequalities with constraints, Commun. Nonlinear Sci. Numer. Simul. 114, 106686, 2022.
  • [21] S. Migórski and S.D. Zeng, A class of differential hemivariational inequalities in Ba- nach spaces, J. Glob. Optim. 72, 761–779, 2018.
  • [22] S. Migórski, A. Ochal and M. Sofonea, Nonlinear Inclusions and Hemivariational Inequalities. Models and Analysis of Contact Problems, in: Advances in Mechanics and Mathematics 26, Springer, New York, 2013.
  • [23] S. Migórski, A. Ochal and M. Sofonea, History-dependent variational-hemivariational inequalities in contact mechanics, Nonlinear Anal. Real World Appl. 22, 604–618, 2015.
  • [24] J.M. Peng, Equivalence of variational inequality problems to unconstrained minimization, Math. Program. 78 (3), 347–355, 1997.
  • [25] J.M. Peng and M. Fukushima, A hybrid Newton method for solving the variational inequality problem via the D-gap function, Math. Program. 86 (2), 367–386, 1999.
  • [26] M.V. Solodov and P. Tseng, Some methods based on the D-gap function for solving monotone variational inequalities, Comput. Optim. Appl. 17 (2–3), 255–277, 2000.
  • [27] M. Sofonea, S. Migórski and W. Han, A penalty method for history-dependent variational-hemivariational inequalities, Comput. Math. Appl. 75 (7), 2561–2573, 2018.
  • [28] M. Sofonea and F. Pătrulescu, Penalization of history-dependent variational inequal- ities, Eur. J. Appl. Math. 25 (2), 155–176, 2014.
  • [29] M. Sofonea, W. Han and S. Migórski, Numerical analysis of history-dependent variational-hemivariational inequalities with applications to contact problems, Eur. J. Appl. Math. 26 (4), 427–452, 2015.
  • [30] M. Sofonea and A. Matei, History-dependent quasi-variational inequalities arising in contact mechanics, Eur. J. Appl. Math. 22, (5), 471–491, 2011.
  • [31] M. Sofonea and Y.-B. Xiao, Fully history-dependent quasivariational inequalities in contact mechanics, Appl. Anal. 95 (11), 2464–2484, 2016.
  • [32] V.M. Tam, Upper-bound error estimates for double phase obstacle problems with Clarke’s subdifferential, Numer. Funct. Anal. Optim. 43 (4), 463–485, 2022.
  • [33] P. Tseng, On linear convergence of iterative methods for the variational inequality, J. Comput. Appl. Math. 60, 237–252, 1995.
  • [34] F.P. Vasil’yev, Methods of Solution of Extremal Problems, Nauka, Moscow, 1981.
  • [35] J.H. Wu, M. Florian and P. Marcotte, A general descent framework for the monotone variational inequality problem, Math. Program. 61, 281–300, 1993.
  • [36] N. Yamashita and M. Fukushima, Equivalent unconstrained minimization and global error bounds for variational inequality problems, SIAM J. Control Optim. 35, 273– 284, 1997.
  • [37] S.D. Zeng, Y.R. Bai, L. Gasiński and P. Winkert, Existence results for double phase implicit obstacle problems involving multivalued operators, Calc. Var. PDEs 59(5), 1–18, 2020.
  • [38] S.D. Zeng, S. Migórski and Z.H. Liu, Well-posedness, optimal control, and sensitivity analysis for a class of differential variational-hemivariational inequalities, SIAM J. Optim. 31, 2829–2862, 2021.
  • [39] S.D. Zeng, N.S. Papageorgiou and V.D. Rădulescu, Nonsmooth dynamical systems: From the existence of solutions to optimal and feedback control, Bull. Sci. Math. 176, 103131, 2022.
  • [40] S.D. Zeng, V.D. Rădulescu and P. Winkert, Double phase implicit obstacle problems with convection and multivalued mixed boundary value conditions, SIAM J. Math. Anal. 54, 1898–1926, 2022.
  • [41] S.D. Zeng and E. Vilches, Well-posedness of history/state-dependent implicit sweeping processes, J. Optim. Theory Appl. 186, 960–984, 2020.
Year 2023, , 1550 - 1566, 03.11.2023
https://doi.org/10.15672/hujms.1183739

Abstract

References

  • [1] G. Bigi and M. Passacantando, D-gap functions and descent techniques for solving equilibrium problems, J. Global Optim. 62 (1), 183–203, 2015.
  • [2] J.X. Cen, A.A. Khan, D. Motreanu and S.D. Zeng, Inverse problems for generalized quasi-variational inequalities with application to elliptic mixed boundary value systems, Inverse Problems 38, 065006, 2022.
  • [3] J.X. Cen, V.T. Nguyen and S.D. Zeng, Gap functions and global error bounds for history-dependent variational-hemivariational inequalities, J. Nonlinear Var. Anal. 6, 461–481, 2022.
  • [4] C. Charitha, A note on D-gap functions for equilibrium problems, Optimization, 62 (2), 211–226, 2013.
  • [5] Z. Denkowski, S. Migórski and N.S. Papageorgiou, An Introduction to Nonlinear Analysis: Theory, Kluwer Academic/Plenum Publishers, Boston, Dordrecht, London, New York, 2003.
  • [6] Z. Denkowski, S. Migórski and N.S. Papageorgiou, An Introduction to Nonlinear Analysis: Applications, Kluwer Academic/Plenum Publishers, Boston, Dordrecht, London, New York, 2003.
  • [7] M. Fukushima, Equivalent differentiable optimization problems and descent methods for asymmetric variational inequality problems, Math. Program. 53 (4), 99–110, 1992.
  • [8] J. Haslinger, M. Miettinen and P.D. Panagiotopoulos, Finite Element Method for Hemivariational Inequalities: Theory, Methods and Applications. Kluwer Academic Publishers, Boston, 1999.
  • [9] N.V. Hung, S. Migórski, V.M. Tam and S. Zeng, Gap functions and error bounds for variational-hemivariational inequalities, Acta. Appl. Math. 169, 691–709, 2020.
  • [10] N.V. Hung and V.M. Tam, Error bound analysis of the D-gap functions for a class of elliptic variational inequalities with applications to frictional contact mechanics, Z. Angew. Math. Phys. 72, 173, 2021.
  • [11] N.V. Hung, V.M. Tam and B. Dumitru, Regularized gap functions and error bounds for split mixed vector quasivariational inequality problems, Math. Methods Appl. Sci. 43, 4614–4626, 2020.
  • [12] N.V. Hung, V.M. Tam and Y. Zhou, A new class of strong mixed vector GQVIP- generalized quasi-variational inequality problems in fuzzy environment with regularized gap functions based error bounds, J Comput Appl Math. 381, 113055, 2021.
  • [13] N.V. Hung, X. Qin, V.M. Tam and J.C. Yao, Difference gap functions and global error bounds for random mixed equilibrium problems, Filomat 34, 2739–2761, 2020.
  • [14] I.V. Konnov and O.V. Pinyagina, D-gap functions for a class of equilibrium problems in Banach spaces, Comput. Methods Appl. Math. 3 (2), 274–286, 2003.
  • [15] E.S. Levitin and B.T. Polyak, Constrained minimization methods, Comput. Math. Math. Phys. 6, 1–50, 1996.
  • [16] G. Li and K.F. Ng, Error bounds of generalized D-gap functions for nonsmooth and nonmonotone variational inequality problems, SIAM J. Optim. 20 (2), 667–690, 2009.
  • [17] G. Li, C. Tang and Z. Wei, Error bound results for generalized D-gap functions of nonsmooth variational inequality problems, J. Comput. Appl. Math. 233 (11), 2795– 2806, 2010.
  • [18] Z.H. Liu, D. Motreanu and S.D. Zeng, Generalized penalty and regularization method for differential variational-hemivariational inequalities, SIAM J. Optim. 31, 1158– 1183, 2021.
  • [19] Z.Q. Luo and P. Tseng, Error bounds and convergence analysis of feasible descent methods: A general approach, Ann. Oper. Res. 46, 157–178, 1993.
  • [20] S. Migórski, Y. Bai and S.D. Zeng, A new class of history-dependent quasi variational-hemivariational inequalities with constraints, Commun. Nonlinear Sci. Numer. Simul. 114, 106686, 2022.
  • [21] S. Migórski and S.D. Zeng, A class of differential hemivariational inequalities in Ba- nach spaces, J. Glob. Optim. 72, 761–779, 2018.
  • [22] S. Migórski, A. Ochal and M. Sofonea, Nonlinear Inclusions and Hemivariational Inequalities. Models and Analysis of Contact Problems, in: Advances in Mechanics and Mathematics 26, Springer, New York, 2013.
  • [23] S. Migórski, A. Ochal and M. Sofonea, History-dependent variational-hemivariational inequalities in contact mechanics, Nonlinear Anal. Real World Appl. 22, 604–618, 2015.
  • [24] J.M. Peng, Equivalence of variational inequality problems to unconstrained minimization, Math. Program. 78 (3), 347–355, 1997.
  • [25] J.M. Peng and M. Fukushima, A hybrid Newton method for solving the variational inequality problem via the D-gap function, Math. Program. 86 (2), 367–386, 1999.
  • [26] M.V. Solodov and P. Tseng, Some methods based on the D-gap function for solving monotone variational inequalities, Comput. Optim. Appl. 17 (2–3), 255–277, 2000.
  • [27] M. Sofonea, S. Migórski and W. Han, A penalty method for history-dependent variational-hemivariational inequalities, Comput. Math. Appl. 75 (7), 2561–2573, 2018.
  • [28] M. Sofonea and F. Pătrulescu, Penalization of history-dependent variational inequal- ities, Eur. J. Appl. Math. 25 (2), 155–176, 2014.
  • [29] M. Sofonea, W. Han and S. Migórski, Numerical analysis of history-dependent variational-hemivariational inequalities with applications to contact problems, Eur. J. Appl. Math. 26 (4), 427–452, 2015.
  • [30] M. Sofonea and A. Matei, History-dependent quasi-variational inequalities arising in contact mechanics, Eur. J. Appl. Math. 22, (5), 471–491, 2011.
  • [31] M. Sofonea and Y.-B. Xiao, Fully history-dependent quasivariational inequalities in contact mechanics, Appl. Anal. 95 (11), 2464–2484, 2016.
  • [32] V.M. Tam, Upper-bound error estimates for double phase obstacle problems with Clarke’s subdifferential, Numer. Funct. Anal. Optim. 43 (4), 463–485, 2022.
  • [33] P. Tseng, On linear convergence of iterative methods for the variational inequality, J. Comput. Appl. Math. 60, 237–252, 1995.
  • [34] F.P. Vasil’yev, Methods of Solution of Extremal Problems, Nauka, Moscow, 1981.
  • [35] J.H. Wu, M. Florian and P. Marcotte, A general descent framework for the monotone variational inequality problem, Math. Program. 61, 281–300, 1993.
  • [36] N. Yamashita and M. Fukushima, Equivalent unconstrained minimization and global error bounds for variational inequality problems, SIAM J. Control Optim. 35, 273– 284, 1997.
  • [37] S.D. Zeng, Y.R. Bai, L. Gasiński and P. Winkert, Existence results for double phase implicit obstacle problems involving multivalued operators, Calc. Var. PDEs 59(5), 1–18, 2020.
  • [38] S.D. Zeng, S. Migórski and Z.H. Liu, Well-posedness, optimal control, and sensitivity analysis for a class of differential variational-hemivariational inequalities, SIAM J. Optim. 31, 2829–2862, 2021.
  • [39] S.D. Zeng, N.S. Papageorgiou and V.D. Rădulescu, Nonsmooth dynamical systems: From the existence of solutions to optimal and feedback control, Bull. Sci. Math. 176, 103131, 2022.
  • [40] S.D. Zeng, V.D. Rădulescu and P. Winkert, Double phase implicit obstacle problems with convection and multivalued mixed boundary value conditions, SIAM J. Math. Anal. 54, 1898–1926, 2022.
  • [41] S.D. Zeng and E. Vilches, Well-posedness of history/state-dependent implicit sweeping processes, J. Optim. Theory Appl. 186, 960–984, 2020.
There are 41 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Boling Chen This is me 0000-0002-1944-7975

Vo Minh Tam 0000-0002-3959-5449

Publication Date November 3, 2023
Published in Issue Year 2023

Cite

APA Chen, B., & Tam, V. M. (2023). Error bounds for a class of history-dependent variational inequalities controlled by $\mathcal{D}$-gap~functions. Hacettepe Journal of Mathematics and Statistics, 52(6), 1550-1566. https://doi.org/10.15672/hujms.1183739
AMA Chen B, Tam VM. Error bounds for a class of history-dependent variational inequalities controlled by $\mathcal{D}$-gap~functions. Hacettepe Journal of Mathematics and Statistics. November 2023;52(6):1550-1566. doi:10.15672/hujms.1183739
Chicago Chen, Boling, and Vo Minh Tam. “Error Bounds for a Class of History-Dependent Variational Inequalities Controlled by $\mathcal{D}$-gap~functions”. Hacettepe Journal of Mathematics and Statistics 52, no. 6 (November 2023): 1550-66. https://doi.org/10.15672/hujms.1183739.
EndNote Chen B, Tam VM (November 1, 2023) Error bounds for a class of history-dependent variational inequalities controlled by $\mathcal{D}$-gap~functions. Hacettepe Journal of Mathematics and Statistics 52 6 1550–1566.
IEEE B. Chen and V. M. Tam, “Error bounds for a class of history-dependent variational inequalities controlled by $\mathcal{D}$-gap~functions”, Hacettepe Journal of Mathematics and Statistics, vol. 52, no. 6, pp. 1550–1566, 2023, doi: 10.15672/hujms.1183739.
ISNAD Chen, Boling - Tam, Vo Minh. “Error Bounds for a Class of History-Dependent Variational Inequalities Controlled by $\mathcal{D}$-gap~functions”. Hacettepe Journal of Mathematics and Statistics 52/6 (November 2023), 1550-1566. https://doi.org/10.15672/hujms.1183739.
JAMA Chen B, Tam VM. Error bounds for a class of history-dependent variational inequalities controlled by $\mathcal{D}$-gap~functions. Hacettepe Journal of Mathematics and Statistics. 2023;52:1550–1566.
MLA Chen, Boling and Vo Minh Tam. “Error Bounds for a Class of History-Dependent Variational Inequalities Controlled by $\mathcal{D}$-gap~functions”. Hacettepe Journal of Mathematics and Statistics, vol. 52, no. 6, 2023, pp. 1550-66, doi:10.15672/hujms.1183739.
Vancouver Chen B, Tam VM. Error bounds for a class of history-dependent variational inequalities controlled by $\mathcal{D}$-gap~functions. Hacettepe Journal of Mathematics and Statistics. 2023;52(6):1550-66.