Homological objects of min-pure exact sequences
Year 2024,
, 342 - 355, 23.04.2024
Yusuf Alagöz
,
Ali Moradzadeh-dehkordı
Abstract
In a recent paper, Mao has studied min-pure injective modules to investigate the existence of min-injective covers. A min-pure injective module is one that is injective relative only to min-pure exact sequences. In this paper, we study the notion of min-pure projective modules which is the projective objects of min-pure exact sequences. Various ring characterizations and examples of both classes of modules are obtained. Along this way, we give conditions which guarantee that each min-pure projective module is either injective or projective. Also, the rings whose injective objects are min-pure projective are considered. The commutative rings over which all injective modules are min-pure projective are exactly quasi-Frobenius. Finally, we are interested with the rings all of its modules are min-pure projective. We obtain that a ring $R$ is two-sided K\"othe if all right $R$-modules are min-pure projective. Also, a commutative ring over which all modules are min-pure projective is quasi-Frobenius serial. As consequence, over a commutative indecomposable ring with $J(R)^{2}=0$, it is proven that all $R$-modules are min-pure projective if and only if $R$ is either a field or a quasi-Frobenius ring of composition length $2$.
Supporting Institution
SCHOOL OF MATHEMATICS, INSTITUTE FOR RESEARCH IN FUNDAMENTAL SCIENCES (IPM), TEHRAN, IRAN
Project Number
1401160414
References
- [1] Y. Alagöz and E. Büyükasık, On max-flat and max-cotorsion modules, AAECC 32,
195-215, 2021.
- [2] Y. Alagöz, S. Göral Benli and E. Büyükasık, On simple-injective modules, J. Algebra
Appl, 2022. https://doi.org/10.1142/S0219498823501384.
- [3] M. Arabi-Kakavand, Sh. Asgari and Y. Tolooei, Noetherian rings with almost injective
simple modules, Comm. Algebra, 45 (8), 3619-3626, 2017.
- [4] M. Behboodi, A. Ghorbani, A. Moradzadeh-Dehkordi and S.H. Shojaee, On left Köthe
rings and a generalization of Köthe-Cohen-Kaplansky Theorem, Proc. Amer. Math.
Soc. 142, 2625–2631, 2014.
- [5] M. Behboodi, A. Ghorbani, A. Moradzadeh-Dehkordi and S.H. Shojaee, On FCPurity
and I-Purity of Modules and Köthe Rings, Comm. Algebra, 42 (5), 2061–2081,
2014.
- [6] M. Behboodi, A. Ghorbani, A. Moradzadeh-Dehkordi and S.H. Shojaee, C-Pure Projective
Modules, Comm. Algebra, 41, 4559–4575, 2013.
- [7] J.E. Björk, Rings satisfying certain chain conditions, J. Reine Angew Math. 245,
63–73, 1970.
- [8] E. Büyükasık and Y. Durgun, Absolutely s-pure modules and neat-flat modules Comm.
Algebra, 43 (2), 384–399, 2015.
- [9] I.S. Cohen and I. Kaplansky, Rings for which every module is a direct sum of cyclic
modules Math. Z. 54, 97–101, 1951.
- [10] P.M. Cohn, On the free product of associative rings, Math. Z. 71, 380–398, 1959.
- [11] F. Couchot, RD-flatness and RD-injectivity, Comm. Algebra, 34, 3675–3689, 2006.
- [12] R.R. Colby, Rings which have flat injective modules, J. Algebra 35, 239–252, 1975.
- [13] K. Divaani-Aazar, M.A. Esmkhani and M. Tousi, A criterion for rings which are
locally valuation rings, Colloq. Math. 116, 153–164, 2009.
- [14] N.V. Dung, D.V. Huynh, P.F. Smith and R. Wisbauer, Extending modules, Pitman
Research Notes in Mathematics Series, vol. 313, Longman Scientific and Technical,
Harlow, 1994.
- [15] E.E. Enochs and O.M.G. Jenda, Relative homological algebra, Berlin: Walter de
Gruyter, 2000.
- [16] C. Faith, Algebra. II, Springer-Verlag, Berlin-New York, 1976.
- [17] C. Faith and E.A. Walker, Direct sum representation of injective modules, J. Algebra,
5 (2), 203–221, 1967.
- [18] A. Facchini, Module Theory, Birkhauser Verlag-Basel, 1998.
- [19] A.I. Generalov, Weak and $\omega$-high purities in the category of modules, Mat. Sb. (N.S.)
34 (3), 345–356, 1978.
- [20] K.R. Goodearl and R.B. Warfield, An Introduction to Noncommutative Noetherian
Rings 2nd ed. Cambridge: Cambridge University Press, 2004.
- [21] M. Greferath, A. Nechaev and R. Wisbauer, Finite quasi-Frobenius modules and linear
codes, J. Algebra Appl. 3 (3), 1–26, 2004.
- [22] M. Harada, Self mini-injective rings, Osaka J. Math. 19 (2), 587–597, 1982.
- [23] H. Holm and P. Jorgensen, Covers, precovers, and purity, Illinois J. Math. 52 (2),
691–703, 2008.
- [24] T. Honold, Characterization of finite Frobenius rings, Arch. Math. 76 (6), 406–415,
2001.
- [25] G. Köthe, Verallgemeinerte Abelsche Gruppen mit hyperkomplexem Operatorenring,
(German). Math. Z. 39, 31–44, 1935.
- [26] T.Y. Lam, Lectures on modules and rings Springer-Verlag, New York, 1999.
- [27] Z.K. Liu, Rings with flat left socle, Comm. Algebra, 23 (6), 1645–1656, 1995.
- [28] L. Mao, On mininjective and min-flat modules, Publ. Math. Debrecen 72 (3-4),
347–358, 2008.
- [29] L. Mao, Min-flat modules and min-coherent rings, Comm. Algebra, 35 (2), 635–650,
2007.
- [30] A.R. Mehdi, Purity relative to classes of finitely presented modules, J. Algebra Appl.
12 (8), 1350050, 2013.
- [31] A. Moradzadeh-Dehkordi and F. Couchot, RD-flatness and RD-injectivity of simple
modules, J.Pure Appl. Algebra 226, 107034, 2022.
- [32] W.K. Nicholson and J.F. Watters, Rings with projective socle, Proc. Amer. Math.
Soc. 102, 443–450, 1988.
- [33] W.K. Nicholson and M.F. Yousif, Mininjective rings, J. Algebra 187, 548–578, 1997.
- [34] G. Puninski, M. Prest and P. Rothmaler, Rings described by various purities, Comm.
Algebra, 27, 2127–2162, 1999.
- [35] B. Stenström, Pure submodules, Ark. Mat. 7, 159–171, 1967.
- [36] R.B. Warfield, Purity and algebraic compactness for modules, Pacific J. Math. 28,
699–719, 1969.
- [37] R. Wisbauer, Foundations of Module and Ring Theory, New York: Gordon and-
Breach, 1991.
- [38] J.A. Wood, Duality for modules over finite rings and applications to coding theory,
Amer. J. Math. 121 (3), 555–575, 1999.
Year 2024,
, 342 - 355, 23.04.2024
Yusuf Alagöz
,
Ali Moradzadeh-dehkordı
Project Number
1401160414
References
- [1] Y. Alagöz and E. Büyükasık, On max-flat and max-cotorsion modules, AAECC 32,
195-215, 2021.
- [2] Y. Alagöz, S. Göral Benli and E. Büyükasık, On simple-injective modules, J. Algebra
Appl, 2022. https://doi.org/10.1142/S0219498823501384.
- [3] M. Arabi-Kakavand, Sh. Asgari and Y. Tolooei, Noetherian rings with almost injective
simple modules, Comm. Algebra, 45 (8), 3619-3626, 2017.
- [4] M. Behboodi, A. Ghorbani, A. Moradzadeh-Dehkordi and S.H. Shojaee, On left Köthe
rings and a generalization of Köthe-Cohen-Kaplansky Theorem, Proc. Amer. Math.
Soc. 142, 2625–2631, 2014.
- [5] M. Behboodi, A. Ghorbani, A. Moradzadeh-Dehkordi and S.H. Shojaee, On FCPurity
and I-Purity of Modules and Köthe Rings, Comm. Algebra, 42 (5), 2061–2081,
2014.
- [6] M. Behboodi, A. Ghorbani, A. Moradzadeh-Dehkordi and S.H. Shojaee, C-Pure Projective
Modules, Comm. Algebra, 41, 4559–4575, 2013.
- [7] J.E. Björk, Rings satisfying certain chain conditions, J. Reine Angew Math. 245,
63–73, 1970.
- [8] E. Büyükasık and Y. Durgun, Absolutely s-pure modules and neat-flat modules Comm.
Algebra, 43 (2), 384–399, 2015.
- [9] I.S. Cohen and I. Kaplansky, Rings for which every module is a direct sum of cyclic
modules Math. Z. 54, 97–101, 1951.
- [10] P.M. Cohn, On the free product of associative rings, Math. Z. 71, 380–398, 1959.
- [11] F. Couchot, RD-flatness and RD-injectivity, Comm. Algebra, 34, 3675–3689, 2006.
- [12] R.R. Colby, Rings which have flat injective modules, J. Algebra 35, 239–252, 1975.
- [13] K. Divaani-Aazar, M.A. Esmkhani and M. Tousi, A criterion for rings which are
locally valuation rings, Colloq. Math. 116, 153–164, 2009.
- [14] N.V. Dung, D.V. Huynh, P.F. Smith and R. Wisbauer, Extending modules, Pitman
Research Notes in Mathematics Series, vol. 313, Longman Scientific and Technical,
Harlow, 1994.
- [15] E.E. Enochs and O.M.G. Jenda, Relative homological algebra, Berlin: Walter de
Gruyter, 2000.
- [16] C. Faith, Algebra. II, Springer-Verlag, Berlin-New York, 1976.
- [17] C. Faith and E.A. Walker, Direct sum representation of injective modules, J. Algebra,
5 (2), 203–221, 1967.
- [18] A. Facchini, Module Theory, Birkhauser Verlag-Basel, 1998.
- [19] A.I. Generalov, Weak and $\omega$-high purities in the category of modules, Mat. Sb. (N.S.)
34 (3), 345–356, 1978.
- [20] K.R. Goodearl and R.B. Warfield, An Introduction to Noncommutative Noetherian
Rings 2nd ed. Cambridge: Cambridge University Press, 2004.
- [21] M. Greferath, A. Nechaev and R. Wisbauer, Finite quasi-Frobenius modules and linear
codes, J. Algebra Appl. 3 (3), 1–26, 2004.
- [22] M. Harada, Self mini-injective rings, Osaka J. Math. 19 (2), 587–597, 1982.
- [23] H. Holm and P. Jorgensen, Covers, precovers, and purity, Illinois J. Math. 52 (2),
691–703, 2008.
- [24] T. Honold, Characterization of finite Frobenius rings, Arch. Math. 76 (6), 406–415,
2001.
- [25] G. Köthe, Verallgemeinerte Abelsche Gruppen mit hyperkomplexem Operatorenring,
(German). Math. Z. 39, 31–44, 1935.
- [26] T.Y. Lam, Lectures on modules and rings Springer-Verlag, New York, 1999.
- [27] Z.K. Liu, Rings with flat left socle, Comm. Algebra, 23 (6), 1645–1656, 1995.
- [28] L. Mao, On mininjective and min-flat modules, Publ. Math. Debrecen 72 (3-4),
347–358, 2008.
- [29] L. Mao, Min-flat modules and min-coherent rings, Comm. Algebra, 35 (2), 635–650,
2007.
- [30] A.R. Mehdi, Purity relative to classes of finitely presented modules, J. Algebra Appl.
12 (8), 1350050, 2013.
- [31] A. Moradzadeh-Dehkordi and F. Couchot, RD-flatness and RD-injectivity of simple
modules, J.Pure Appl. Algebra 226, 107034, 2022.
- [32] W.K. Nicholson and J.F. Watters, Rings with projective socle, Proc. Amer. Math.
Soc. 102, 443–450, 1988.
- [33] W.K. Nicholson and M.F. Yousif, Mininjective rings, J. Algebra 187, 548–578, 1997.
- [34] G. Puninski, M. Prest and P. Rothmaler, Rings described by various purities, Comm.
Algebra, 27, 2127–2162, 1999.
- [35] B. Stenström, Pure submodules, Ark. Mat. 7, 159–171, 1967.
- [36] R.B. Warfield, Purity and algebraic compactness for modules, Pacific J. Math. 28,
699–719, 1969.
- [37] R. Wisbauer, Foundations of Module and Ring Theory, New York: Gordon and-
Breach, 1991.
- [38] J.A. Wood, Duality for modules over finite rings and applications to coding theory,
Amer. J. Math. 121 (3), 555–575, 1999.