We show that the $\lambda$-semidirect product $M \rtimes^{\lambda} W$ of a left $P$-Ehresmann semigroup $M$ and a left restriction semigroup $W$ is a left $P$-Ehresmann semigroup. We explore the behavior of generalized Green's relations on $M \rtimes^{\lambda} W$, and investigate some properties of $M \rtimes^{\lambda} W$. Then the Zappa-Szép product of a right Ehresmann semigroup and its distinguished semilattice is studied. An example of Zappa-Szép product in the context of right Ehresmann semigroups is also given.
[1] A. Batbedat, $\gamma$-demi-groupes, demi-modules, produit demi-direct, in: Semigroups
Proceedings, Lecture Notes in Mathematics 855, 1-18, Springer, Oberwolfach, 1981.
[2] A. Batbedat and J.B. Fountain, Connections between left adequate semigroups and
$\gamma$-semigroups, Semigroup Forum 22 (1), 59-65, 1981.
[3] B. Billhardt, Extensions of semilattices by left type-A semigroups, Glasgow Math. J.
39 (1), 7-16, 1997.
[4] B. Billhardt, On a wreath product embedding and idempotent pure congruences on
inverse semigroups, Semigroup Forum 45 (1), 45-54, 1992.
[5] M.G. Brin, On the Zappa-Szép product, Commun. Algebra 33 (2), 393-424, 2005.
[6] J.R.B. Cockett and S. Lack, Restriction categories I: categories of partial maps, Theor.
Comput. Sci. 270 (1-2), 223-259, 2002.
[7] C. Cornock and V. Gould, Proper two-sided restriction semigroups and partial actions,
J. Pure Appl. Algebra 216 (4), 935-949, 2012.
[8] B.A. Davey and H.A. Priestley, Introduction to Lattices and Order, Cambridge
University Press, 2002.
[9] M. Erné and V. Joshi, Ideals in atomic posets, Discrete Math. 338 (6), 954-971, 2015.
[10] J.B. Fountain, G.M.S. Gomes and V. Gould, The free ample monoid, Int. J. Algebra
Comput. 19 (4), 527-554, 2009.
[11] G.M.S. Gomes, Proper extensions of weakly left ample semigroups, Acta Math. Hung.
109 (1-2), 33-51, 2005.
[12] G.M.S. Gomes and V. Gould, Graph expansions of unipotent monoids, Commun.
Algebra 28 (1), 447-463, 2000.
[13] G.M.S. Gomes and V. Gould, Proper weakly left ample semigroups, Int. J. Algebra
Comput. 9 (6), 721-739, 1999.
[14] V. Gould, Notes on restriction semigroups and related structures; formerly
(weakly) left E-ample semigroups, 2010. See http://www-users.york.ac.uk/
~varg1/restriction.pdf
[15] V. Gould, Restriction and Ehresmann semigroups, in: Proceedings of the
International Conference on Algebra 2010, 265-288, World Sci. Publ., Hackensack,
2012.
[16] V. Gould and R. Zenab, Restriction semigroups and $\lambda$-Zappa-Szép products, Period.
Math. Hung. 73 (2), 179-207, 2016.
[17] C. Hollings, From right PP monoids to restriction semigroups: a survey, Eur. J. Pure
Appl. Math. 2 (1), 21-57, 2009.
[18] J.M. Howie, Fundamentals of Semigroup Theory, Oxford University Press, 1995.
[19] M. Jackson and T. Stokes, An invitation to C-semigroups, Semigroup Forum 62 (2),
279-310, 2001.
[20] P.R. Jones, A common framework for restriction semigroups and regular -
semigroups, J. Pure Appl. Algebra 216 (3), 618-632, 2012.
[27] G. Zappa, Sulla construzione dei gruppi prodotto di due sottogruppi permutabili tra
loro, Atti Secondo Congresso Un. Ital. Bologna, 119-125, 1940.
[28] R. Zenab, Algebraic properties of Zappa-Szép products of semigroups and monoids,
Semigroup Forum 96 (2), 316-332, 2018.
[29] R. Zenab, Decomposition of semigroups into semidirect and Zappa-Szép products, PhD
thesis, University of York, 2014.
[1] A. Batbedat, $\gamma$-demi-groupes, demi-modules, produit demi-direct, in: Semigroups
Proceedings, Lecture Notes in Mathematics 855, 1-18, Springer, Oberwolfach, 1981.
[2] A. Batbedat and J.B. Fountain, Connections between left adequate semigroups and
$\gamma$-semigroups, Semigroup Forum 22 (1), 59-65, 1981.
[3] B. Billhardt, Extensions of semilattices by left type-A semigroups, Glasgow Math. J.
39 (1), 7-16, 1997.
[4] B. Billhardt, On a wreath product embedding and idempotent pure congruences on
inverse semigroups, Semigroup Forum 45 (1), 45-54, 1992.
[5] M.G. Brin, On the Zappa-Szép product, Commun. Algebra 33 (2), 393-424, 2005.
[6] J.R.B. Cockett and S. Lack, Restriction categories I: categories of partial maps, Theor.
Comput. Sci. 270 (1-2), 223-259, 2002.
[7] C. Cornock and V. Gould, Proper two-sided restriction semigroups and partial actions,
J. Pure Appl. Algebra 216 (4), 935-949, 2012.
[8] B.A. Davey and H.A. Priestley, Introduction to Lattices and Order, Cambridge
University Press, 2002.
[9] M. Erné and V. Joshi, Ideals in atomic posets, Discrete Math. 338 (6), 954-971, 2015.
[10] J.B. Fountain, G.M.S. Gomes and V. Gould, The free ample monoid, Int. J. Algebra
Comput. 19 (4), 527-554, 2009.
[11] G.M.S. Gomes, Proper extensions of weakly left ample semigroups, Acta Math. Hung.
109 (1-2), 33-51, 2005.
[12] G.M.S. Gomes and V. Gould, Graph expansions of unipotent monoids, Commun.
Algebra 28 (1), 447-463, 2000.
[13] G.M.S. Gomes and V. Gould, Proper weakly left ample semigroups, Int. J. Algebra
Comput. 9 (6), 721-739, 1999.
[14] V. Gould, Notes on restriction semigroups and related structures; formerly
(weakly) left E-ample semigroups, 2010. See http://www-users.york.ac.uk/
~varg1/restriction.pdf
[15] V. Gould, Restriction and Ehresmann semigroups, in: Proceedings of the
International Conference on Algebra 2010, 265-288, World Sci. Publ., Hackensack,
2012.
[16] V. Gould and R. Zenab, Restriction semigroups and $\lambda$-Zappa-Szép products, Period.
Math. Hung. 73 (2), 179-207, 2016.
[17] C. Hollings, From right PP monoids to restriction semigroups: a survey, Eur. J. Pure
Appl. Math. 2 (1), 21-57, 2009.
[18] J.M. Howie, Fundamentals of Semigroup Theory, Oxford University Press, 1995.
[19] M. Jackson and T. Stokes, An invitation to C-semigroups, Semigroup Forum 62 (2),
279-310, 2001.
[20] P.R. Jones, A common framework for restriction semigroups and regular -
semigroups, J. Pure Appl. Algebra 216 (3), 618-632, 2012.
[27] G. Zappa, Sulla construzione dei gruppi prodotto di due sottogruppi permutabili tra
loro, Atti Secondo Congresso Un. Ital. Bologna, 119-125, 1940.
[28] R. Zenab, Algebraic properties of Zappa-Szép products of semigroups and monoids,
Semigroup Forum 96 (2), 316-332, 2018.
[29] R. Zenab, Decomposition of semigroups into semidirect and Zappa-Szép products, PhD
thesis, University of York, 2014.
Zaman, B. U. (2024). On left $P$-Ehresmann and right Ehresmann semigroups: $\lambda$-semidirect products and Zappa-Szép products. Hacettepe Journal of Mathematics and Statistics, 53(4), 1039-1059. https://doi.org/10.15672/hujms.1189391
AMA
Zaman BU. On left $P$-Ehresmann and right Ehresmann semigroups: $\lambda$-semidirect products and Zappa-Szép products. Hacettepe Journal of Mathematics and Statistics. August 2024;53(4):1039-1059. doi:10.15672/hujms.1189391
Chicago
Zaman, Baddi Ul. “On Left $P$-Ehresmann and Right Ehresmann Semigroups: $\lambda$-Semidirect Products and Zappa-Szép Products”. Hacettepe Journal of Mathematics and Statistics 53, no. 4 (August 2024): 1039-59. https://doi.org/10.15672/hujms.1189391.
EndNote
Zaman BU (August 1, 2024) On left $P$-Ehresmann and right Ehresmann semigroups: $\lambda$-semidirect products and Zappa-Szép products. Hacettepe Journal of Mathematics and Statistics 53 4 1039–1059.
IEEE
B. U. Zaman, “On left $P$-Ehresmann and right Ehresmann semigroups: $\lambda$-semidirect products and Zappa-Szép products”, Hacettepe Journal of Mathematics and Statistics, vol. 53, no. 4, pp. 1039–1059, 2024, doi: 10.15672/hujms.1189391.
ISNAD
Zaman, Baddi Ul. “On Left $P$-Ehresmann and Right Ehresmann Semigroups: $\lambda$-Semidirect Products and Zappa-Szép Products”. Hacettepe Journal of Mathematics and Statistics 53/4 (August 2024), 1039-1059. https://doi.org/10.15672/hujms.1189391.
JAMA
Zaman BU. On left $P$-Ehresmann and right Ehresmann semigroups: $\lambda$-semidirect products and Zappa-Szép products. Hacettepe Journal of Mathematics and Statistics. 2024;53:1039–1059.
MLA
Zaman, Baddi Ul. “On Left $P$-Ehresmann and Right Ehresmann Semigroups: $\lambda$-Semidirect Products and Zappa-Szép Products”. Hacettepe Journal of Mathematics and Statistics, vol. 53, no. 4, 2024, pp. 1039-5, doi:10.15672/hujms.1189391.
Vancouver
Zaman BU. On left $P$-Ehresmann and right Ehresmann semigroups: $\lambda$-semidirect products and Zappa-Szép products. Hacettepe Journal of Mathematics and Statistics. 2024;53(4):1039-5.