Research Article
BibTex RIS Cite
Year 2023, , 983 - 994, 15.08.2023
https://doi.org/10.15672/hujms.1189672

Abstract

References

  • [1] R. Abraham, J.E Marsden and T. Ratiu, Manifolds, Tensor Analysis and Applications, Springer-Verlag, 1988.
  • [2] H. Cendra, D.D. Holm, M.J.W. Hoyle and J.E. Marsden, The Maxwell-Vlasov equations in Euler-Poincare form, J. Math. Phys. 39, 3138-3157, 1998.
  • [3] K. Chandrasekhar, Ellipsoidal Figures of Equilibrium, Dover, 1977.
  • [4] H. Gümral, Geometry of plasma dynamics I. Group of canonical diffeomorphisms, Journal of Mathematical Physics 51 (8), 501-523, 2010.
  • [5] Z.R. Iwinski and L.A. Turski, Canonical theories of systems interacting electromagnetically, Lett. Appl. Eng. Sci. 4, 179-191, 1976.
  • [6] J.H. Jeans, The stability of spherical nebula, Philos. Trans. R. Soc. London 199, 1-53, 1902.
  • [7] J. Larsson, An action principle for the Vlasov equation and associated Lie perturbation equations. Part 1. The Vlasov-Poisson system, Journal of Plasma Physics 48, 13- 35,1992.
  • [8] F.E. Low, A Lagrangian formulation of the Boltzmann-Vlasov equation for plasmas, Proc. R. Soc. London Ser. A 248, 282-287, 1958.
  • [9] J.E. Marsden and T. Ratiu, Introduction to Symmetry and Mechanics, Springer, 1994.
  • [10] P.J. Olver, Applications of Lie groups to Differential Equations, Springer Science and Business Media LLC, 1986.
  • [11] H. Poincaré, Théorie des tourbillions, Gauthier-Villars, 1890.
  • [12] H. Poincaré, Sur la stabilité de l’équilibre des figures piriformes affectées par une masse fluide en rotation, Philos. Trans. R. Soc. London Ser. A, 333-3 73, 1901.
  • [13] A.A. Vlasov, On vibration properties of electron gas, J. Exp. Theor. Phys. 8 (3), 291-318, 1938.
  • [14] A.A. Vlasov, The vibrational properties of an electron gas, Soviet Physics Uspekhi 10 (6), 721-733, 1968.
  • [15] H. Ye and P.J. Morrison, Action principles for the Vlasov equation, Phys. Fluids B 4, 771-776, 1992.

On the low Lagrangian formulation of Vlasov-Poisson equations

Year 2023, , 983 - 994, 15.08.2023
https://doi.org/10.15672/hujms.1189672

Abstract

In this work, two problems related with the Low Lagrangian formulation of the Vlasov-Poisson equations are solved. The first problem is related to the space on which the Low Lagrangian is defined. It is shown that the Low Lagrangian is defined on the tangent bundle of the densities of configuration space. The second problem is related to the assumptions which are called Low constraints. It is shown that Low constraints amount to the fact that the Low Lagrangian is invariant under a group action.

References

  • [1] R. Abraham, J.E Marsden and T. Ratiu, Manifolds, Tensor Analysis and Applications, Springer-Verlag, 1988.
  • [2] H. Cendra, D.D. Holm, M.J.W. Hoyle and J.E. Marsden, The Maxwell-Vlasov equations in Euler-Poincare form, J. Math. Phys. 39, 3138-3157, 1998.
  • [3] K. Chandrasekhar, Ellipsoidal Figures of Equilibrium, Dover, 1977.
  • [4] H. Gümral, Geometry of plasma dynamics I. Group of canonical diffeomorphisms, Journal of Mathematical Physics 51 (8), 501-523, 2010.
  • [5] Z.R. Iwinski and L.A. Turski, Canonical theories of systems interacting electromagnetically, Lett. Appl. Eng. Sci. 4, 179-191, 1976.
  • [6] J.H. Jeans, The stability of spherical nebula, Philos. Trans. R. Soc. London 199, 1-53, 1902.
  • [7] J. Larsson, An action principle for the Vlasov equation and associated Lie perturbation equations. Part 1. The Vlasov-Poisson system, Journal of Plasma Physics 48, 13- 35,1992.
  • [8] F.E. Low, A Lagrangian formulation of the Boltzmann-Vlasov equation for plasmas, Proc. R. Soc. London Ser. A 248, 282-287, 1958.
  • [9] J.E. Marsden and T. Ratiu, Introduction to Symmetry and Mechanics, Springer, 1994.
  • [10] P.J. Olver, Applications of Lie groups to Differential Equations, Springer Science and Business Media LLC, 1986.
  • [11] H. Poincaré, Théorie des tourbillions, Gauthier-Villars, 1890.
  • [12] H. Poincaré, Sur la stabilité de l’équilibre des figures piriformes affectées par une masse fluide en rotation, Philos. Trans. R. Soc. London Ser. A, 333-3 73, 1901.
  • [13] A.A. Vlasov, On vibration properties of electron gas, J. Exp. Theor. Phys. 8 (3), 291-318, 1938.
  • [14] A.A. Vlasov, The vibrational properties of an electron gas, Soviet Physics Uspekhi 10 (6), 721-733, 1968.
  • [15] H. Ye and P.J. Morrison, Action principles for the Vlasov equation, Phys. Fluids B 4, 771-776, 1992.
There are 15 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Derya Çoksak Er 0000-0001-8298-3247

Publication Date August 15, 2023
Published in Issue Year 2023

Cite

APA Çoksak Er, D. (2023). On the low Lagrangian formulation of Vlasov-Poisson equations. Hacettepe Journal of Mathematics and Statistics, 52(4), 983-994. https://doi.org/10.15672/hujms.1189672
AMA Çoksak Er D. On the low Lagrangian formulation of Vlasov-Poisson equations. Hacettepe Journal of Mathematics and Statistics. August 2023;52(4):983-994. doi:10.15672/hujms.1189672
Chicago Çoksak Er, Derya. “On the Low Lagrangian Formulation of Vlasov-Poisson Equations”. Hacettepe Journal of Mathematics and Statistics 52, no. 4 (August 2023): 983-94. https://doi.org/10.15672/hujms.1189672.
EndNote Çoksak Er D (August 1, 2023) On the low Lagrangian formulation of Vlasov-Poisson equations. Hacettepe Journal of Mathematics and Statistics 52 4 983–994.
IEEE D. Çoksak Er, “On the low Lagrangian formulation of Vlasov-Poisson equations”, Hacettepe Journal of Mathematics and Statistics, vol. 52, no. 4, pp. 983–994, 2023, doi: 10.15672/hujms.1189672.
ISNAD Çoksak Er, Derya. “On the Low Lagrangian Formulation of Vlasov-Poisson Equations”. Hacettepe Journal of Mathematics and Statistics 52/4 (August 2023), 983-994. https://doi.org/10.15672/hujms.1189672.
JAMA Çoksak Er D. On the low Lagrangian formulation of Vlasov-Poisson equations. Hacettepe Journal of Mathematics and Statistics. 2023;52:983–994.
MLA Çoksak Er, Derya. “On the Low Lagrangian Formulation of Vlasov-Poisson Equations”. Hacettepe Journal of Mathematics and Statistics, vol. 52, no. 4, 2023, pp. 983-94, doi:10.15672/hujms.1189672.
Vancouver Çoksak Er D. On the low Lagrangian formulation of Vlasov-Poisson equations. Hacettepe Journal of Mathematics and Statistics. 2023;52(4):983-94.