Research Article
BibTex RIS Cite

Nonconvex integro-differential sweeping processes involving maximal monotone operators

Year 2023, , 1677 - 1690, 03.11.2023
https://doi.org/10.15672/hujms.1197368

Abstract

This paper is devoted to the study of a perturbed differential inclusion governed by a nonconvex sweeping process in a Hilbert space. The sweeping process is perturbed by a sum of an integral forcing term which the integrand depends on two time-variables and a maximal monotone operator. By using a semi-regularization method combined with a Gronwall-like inequality we prove solvability of the initial value problem.

References

  • [1] S. Adly, A. Hantoute and M. Thera, Nonsmooth Lyapunov pairs for infinite-dimensional first-order differential inclusions, Nonlinear Anal. Theory Methods Appl. 75 (3), 985–1008, 2012.
  • [2] S. Adly and B.K. Le, Non-convex sweeping processes involving maximal monotone operators, Optimization 66 (9), 1465–1486, 2017.
  • [3] H.H. Bauschke and P.L. Combettes, Convex analysis and monotone operator theory in Hilbert spaces, Springer, New York, 2011.
  • [4] A. Bouach, T. Haddad and L. Thibault, On the Discretization of Truncated Integro- Differential Sweeping Process and Optimal Control, J. Optim. Theory. Appl. 193 (1-3), 785–830, 2022.
  • [5] A. Bouach, T. Haddad and L. Thibault, Nonconvex integro differential sweeping process with applications, SIAM J. Control Optim. 60 (5), 2971–2995, 2022.
  • [6] H. Brezis, Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, Mathematics Studies 5, North Holland, Amsterdam, 1973.
  • [7] F.H. Clarke, Y.S. Ledyaev, R.J. Stern and P.R. Wolenski, Nonsmooth Analysis and Control Theory, Springer Science & Business Media 178, 1998.
  • [8] G. Colombo and L. Thibault, Prox-Regular Sets and Applications, Handbook of Non-convex Analysis and Applications, International Press, Somerville, MA, 99–182, 2010.
  • [9] H. Federer, Curvature measures, Trans. Amer. Math. Soc. 93 (3), 418–491, 1959.
  • [10] P. Hartman and G. Stampacchia, On some non-linear elliptic differential-functional equations, Acta. Math. 115, 271–310, 1966.
  • [11] Z.H. Liu, S. Migórski and S.D. Zeng, Partial differential variational inequalities in-volving nonlocal boundary conditions in Banach spaces, J. Differ. Equ. 263, 3989– 4006, 2017.
  • [12] Z.H. Liu and S.D. Zeng, Differential variational inequalities in infinite Banach spaces, Acta Math. Sci. 37, 26–32, 2017.
  • [13] Z.H. Liu, S.D. Zeng and D. Motreanu, Evolutionary problems driven by variational inequalities, J. Differ. Equ. 260, 6787–6799, 2016.
  • [14] Z.H. Liu, S.D. Zeng and D. Motreanu, Partial differential hemivariational inequalities, Adv. Nonlinear Anal. 7, 571–586, 2018.
  • [15] J.J. Moreau, Rafle par un convexe variable I, Sém. Anal. Convexe, Montpellier, Ex- posé 15, 1971.
  • [16] J.J. Moreau, Evolution problem associated with a moving convex set in a Hilbert space, J. Differ. Equ. 26, 347–374, 1977.
  • [17] P.D. Panagiotopoulos, Nonconvex energy functions. Hemivariational inequalities and substationarity principles, Acta. Mech. 48, 111–130, 1983.
  • [18] R.A. Poliquin, R.T. Rockafellar and L. Thibault, Local differentiability of distance functions, Trans. Amer. Math. Soc. 352, 5231–5249, 2000.
  • [19] G. Stampacchia, Formes bilinéaires coercitives sur les ensembles convexes, C. R. Acad. Sci. Paris 258, 4413–4416, 1964.
  • [20] L. Thibault, Unilateral Variational Analysis in Banach Spaces, World Scientific, 2023.
Year 2023, , 1677 - 1690, 03.11.2023
https://doi.org/10.15672/hujms.1197368

Abstract

References

  • [1] S. Adly, A. Hantoute and M. Thera, Nonsmooth Lyapunov pairs for infinite-dimensional first-order differential inclusions, Nonlinear Anal. Theory Methods Appl. 75 (3), 985–1008, 2012.
  • [2] S. Adly and B.K. Le, Non-convex sweeping processes involving maximal monotone operators, Optimization 66 (9), 1465–1486, 2017.
  • [3] H.H. Bauschke and P.L. Combettes, Convex analysis and monotone operator theory in Hilbert spaces, Springer, New York, 2011.
  • [4] A. Bouach, T. Haddad and L. Thibault, On the Discretization of Truncated Integro- Differential Sweeping Process and Optimal Control, J. Optim. Theory. Appl. 193 (1-3), 785–830, 2022.
  • [5] A. Bouach, T. Haddad and L. Thibault, Nonconvex integro differential sweeping process with applications, SIAM J. Control Optim. 60 (5), 2971–2995, 2022.
  • [6] H. Brezis, Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, Mathematics Studies 5, North Holland, Amsterdam, 1973.
  • [7] F.H. Clarke, Y.S. Ledyaev, R.J. Stern and P.R. Wolenski, Nonsmooth Analysis and Control Theory, Springer Science & Business Media 178, 1998.
  • [8] G. Colombo and L. Thibault, Prox-Regular Sets and Applications, Handbook of Non-convex Analysis and Applications, International Press, Somerville, MA, 99–182, 2010.
  • [9] H. Federer, Curvature measures, Trans. Amer. Math. Soc. 93 (3), 418–491, 1959.
  • [10] P. Hartman and G. Stampacchia, On some non-linear elliptic differential-functional equations, Acta. Math. 115, 271–310, 1966.
  • [11] Z.H. Liu, S. Migórski and S.D. Zeng, Partial differential variational inequalities in-volving nonlocal boundary conditions in Banach spaces, J. Differ. Equ. 263, 3989– 4006, 2017.
  • [12] Z.H. Liu and S.D. Zeng, Differential variational inequalities in infinite Banach spaces, Acta Math. Sci. 37, 26–32, 2017.
  • [13] Z.H. Liu, S.D. Zeng and D. Motreanu, Evolutionary problems driven by variational inequalities, J. Differ. Equ. 260, 6787–6799, 2016.
  • [14] Z.H. Liu, S.D. Zeng and D. Motreanu, Partial differential hemivariational inequalities, Adv. Nonlinear Anal. 7, 571–586, 2018.
  • [15] J.J. Moreau, Rafle par un convexe variable I, Sém. Anal. Convexe, Montpellier, Ex- posé 15, 1971.
  • [16] J.J. Moreau, Evolution problem associated with a moving convex set in a Hilbert space, J. Differ. Equ. 26, 347–374, 1977.
  • [17] P.D. Panagiotopoulos, Nonconvex energy functions. Hemivariational inequalities and substationarity principles, Acta. Mech. 48, 111–130, 1983.
  • [18] R.A. Poliquin, R.T. Rockafellar and L. Thibault, Local differentiability of distance functions, Trans. Amer. Math. Soc. 352, 5231–5249, 2000.
  • [19] G. Stampacchia, Formes bilinéaires coercitives sur les ensembles convexes, C. R. Acad. Sci. Paris 258, 4413–4416, 1964.
  • [20] L. Thibault, Unilateral Variational Analysis in Banach Spaces, World Scientific, 2023.
There are 20 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Mouchira Mansour 0000-0003-3050-8297

Ilyas Kecis This is me 0000-0001-7941-5687

Tahar Haddad 0000-0001-6899-8776

Early Pub Date August 15, 2023
Publication Date November 3, 2023
Published in Issue Year 2023

Cite

APA Mansour, M., Kecis, I., & Haddad, T. (2023). Nonconvex integro-differential sweeping processes involving maximal monotone operators. Hacettepe Journal of Mathematics and Statistics, 52(6), 1677-1690. https://doi.org/10.15672/hujms.1197368
AMA Mansour M, Kecis I, Haddad T. Nonconvex integro-differential sweeping processes involving maximal monotone operators. Hacettepe Journal of Mathematics and Statistics. November 2023;52(6):1677-1690. doi:10.15672/hujms.1197368
Chicago Mansour, Mouchira, Ilyas Kecis, and Tahar Haddad. “Nonconvex Integro-Differential Sweeping Processes Involving Maximal Monotone Operators”. Hacettepe Journal of Mathematics and Statistics 52, no. 6 (November 2023): 1677-90. https://doi.org/10.15672/hujms.1197368.
EndNote Mansour M, Kecis I, Haddad T (November 1, 2023) Nonconvex integro-differential sweeping processes involving maximal monotone operators. Hacettepe Journal of Mathematics and Statistics 52 6 1677–1690.
IEEE M. Mansour, I. Kecis, and T. Haddad, “Nonconvex integro-differential sweeping processes involving maximal monotone operators”, Hacettepe Journal of Mathematics and Statistics, vol. 52, no. 6, pp. 1677–1690, 2023, doi: 10.15672/hujms.1197368.
ISNAD Mansour, Mouchira et al. “Nonconvex Integro-Differential Sweeping Processes Involving Maximal Monotone Operators”. Hacettepe Journal of Mathematics and Statistics 52/6 (November 2023), 1677-1690. https://doi.org/10.15672/hujms.1197368.
JAMA Mansour M, Kecis I, Haddad T. Nonconvex integro-differential sweeping processes involving maximal monotone operators. Hacettepe Journal of Mathematics and Statistics. 2023;52:1677–1690.
MLA Mansour, Mouchira et al. “Nonconvex Integro-Differential Sweeping Processes Involving Maximal Monotone Operators”. Hacettepe Journal of Mathematics and Statistics, vol. 52, no. 6, 2023, pp. 1677-90, doi:10.15672/hujms.1197368.
Vancouver Mansour M, Kecis I, Haddad T. Nonconvex integro-differential sweeping processes involving maximal monotone operators. Hacettepe Journal of Mathematics and Statistics. 2023;52(6):1677-90.