Let $K_{\mathcal{\nu }}$ be the modified Bessel functions of the second kind of order $\mathcal{\nu }$ and $Q_{\nu }\left( x\right) =xK_{\mathcal{\nu -}1}\left( x\right) /K_{\mathcal{\nu }}\left( x\right) $. In this paper, we proved that $Q_{\mathcal{\nu }}^{\prime \prime \prime }\left( x\right) <\left( >\right) 0$ for $x>0$ if $\left\vert \nu \right\vert >\left( <\right) 1/2$, which gives an affirmative answer to a guess. As applications, some monotonicity and concavity or convexity results as well functional inequalities involving $Q_{\nu }\left( x\right) $ are established. Moreover, several high order monotonicity of $x^{k}Q_{\nu }^{\left( n\right) }\left( x\right) $ on $\left( 0,\infty \right) $ for certain integers $k$ and $n$ are given.
[1] M. Abramowitz and I. A. Stegun (Eds), Handbook of Mathematical Functions with
Formulas, Graphs, and Mathematical Tables, National Bureau of Standards, Applied
Mathematics Series 55, 10th printing, Dover Publications, New York andWashington,
1972.
[2] M. D. Alenxandrov and A. A. Lacis, A new three-parameter cloud/aerosol particle
size distribution based on the generalized inverse Gaussian density function, Appl.
Math. Comput. 116, 153–165, 2000.
[3] A. Baricz, Bounds for modified Bessel functions of the first and second kinds, Proc.
Edinb. Math. Soc. 53, 575–599, 2010.
[4] Á. Baricz, Bounds for Turánians of modified Bessel functions, Expo. Math. 2015 (2),
223–251, 2015.
[5] E. Grosswald, The Student t-distribution of any degree of freedom is infinitely divisible,
Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 36 (2), 103–109, 1976.
[6] D. H. Kelker, Infinite divisibility and variance mixtures of the normal distribution,
Ann. Math. Statist. 42, 802–808, 1971.
[7] M. E. H. Ismail, Bessel functions and the infinite divisibility of the Student tdistribution,
Ann. Probability 5 (4), 582–585, 1977.
[8] M. E. H. Ismail, Intergal representations and complete monotonicity of various quotients
of Bessel functions, Canadian J. Math. 29 (6), 1198–1207, 1977.
[9] M. E. H. Ismail and D. H. Kelker, The Bessel polynomials and the student tdistribution,
SIAM J. Math. Anal. 7, 82–91, 1976.
[10] M. E. H. Ismail and M. E. Muldoon, Monotonicity of the zeros of a cross-product of
Bessel functions, SIAM J. Math. Anal. 9 (4), 759–767, 1978.
[11] Z.-X. Mao and J.-F. Tian, Monotonicity and complete monotonicity of some functions
involving the modified Bessel function of the second kind, C. R. Math. Acad. Sci. Paris
361, 217–235, 2023.
[12] M. Petrovic, Sur une équation fonctionnelle, Publ. Math. Univ. Belgrade 1, 149–156,
1932.
[13] R. A. Rosenbaum, Subadditive functions, Duke Math. J. 17 (1950), 227–242.
[14] J. Segura, Bounds for ratios of modified Bessel functions and associated Turán-type
inequalities, J. Math. Anal. Appl. 374 (2), 516–528, 2011.
[15] H. C. Simpson and S. J. Spector, Some monotonicity results for ratios of modified
Bessel functions, Quart. Appl. Math. 42 (1), 95–98, 1984.
[16] L. Trlifaj, Asymptotic ratios of Bessel functions of purely imaginary argument, Apl.
Mat. 19, 1–5, 1974.
[17] H. Van Haeringen, Bound states for r-2-like potentials in one and three dimensions,
J. Math. Phys. 19, 2171–2179, 1978.
[18] G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge University
Press, Cambridge, 1944.
[19] D. V. Widder, The Laplace Transform, Princeton University Press, Princeton, 1946.
[20] Z. Yang and J.-F. Tian, Monotonicity rules for the ratio of two Laplace transforms
with applications, J. Math. Anal. Appl. 470 (2), 821–845, 2019.
[21] Z.-H. Yang and J.-F. Tian, A new chain of inequalities involving the Toader-Qi,
logarithmic and exponential means, Appl. Anal. Discrete Math. 15 (2), 467–485, 2021.
[22] Z.-H. Yang and J.-F. Tian, Convexity of a ratio of the modified Bessel functions of
the second kind with applications, Proc. Amer. Math. Soc. 150 (7), 2997–3009, 2022.
[23] Z.-H. Yang and J.-F. Tian, Convexity of ratios of the modified Bessel functions of the
first kind with applications, Rev. Mat. Complut. 36 (3), 799–825, 2023.
[24] Z.-H. Yang and J.-F. Tian, The signs rule for the Laplace integrals with applications,
Indian J. Pure Appl. Math. https://doi.org/10.1007/s13226-023-00447-6.
[25] Z.-H. Yang, J.-F. Tian and M.-K. Wang, A positive answer to Bhatia–Li conjecture
on the monotonicity for a new mean in its parameter, Rev. R. Acad. Cienc. Exactas
Fís. Nat. Ser. A Mat. RACSAM 114 (3), Paper No. 126, 2020.
[26] Z.-H. Yang, J.-F. Tian and Y.-R. Zhu, A sharp lower bound for the complete elliptic
integrals of the first kind, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat.
RACSAM 115 (1), Paper No. 8, 17 pages, 2021.
[27] Z.-H. Yang and S.-Z. Zheng, The monotonicity and convexity for the ratios of modified
Bessel functions of the second kind and applications, Proc. Amer. Math. Soc. 145,
2943-2958, 2017.
[28] Z.-H. Yang and S.-Z. Zheng, Monotonicity and convexity of the ratios of the first kind
modified Bessel functions and applications, Math. Inequal. Appl. 21 (1), 107–125,
2018.
[1] M. Abramowitz and I. A. Stegun (Eds), Handbook of Mathematical Functions with
Formulas, Graphs, and Mathematical Tables, National Bureau of Standards, Applied
Mathematics Series 55, 10th printing, Dover Publications, New York andWashington,
1972.
[2] M. D. Alenxandrov and A. A. Lacis, A new three-parameter cloud/aerosol particle
size distribution based on the generalized inverse Gaussian density function, Appl.
Math. Comput. 116, 153–165, 2000.
[3] A. Baricz, Bounds for modified Bessel functions of the first and second kinds, Proc.
Edinb. Math. Soc. 53, 575–599, 2010.
[4] Á. Baricz, Bounds for Turánians of modified Bessel functions, Expo. Math. 2015 (2),
223–251, 2015.
[5] E. Grosswald, The Student t-distribution of any degree of freedom is infinitely divisible,
Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 36 (2), 103–109, 1976.
[6] D. H. Kelker, Infinite divisibility and variance mixtures of the normal distribution,
Ann. Math. Statist. 42, 802–808, 1971.
[7] M. E. H. Ismail, Bessel functions and the infinite divisibility of the Student tdistribution,
Ann. Probability 5 (4), 582–585, 1977.
[8] M. E. H. Ismail, Intergal representations and complete monotonicity of various quotients
of Bessel functions, Canadian J. Math. 29 (6), 1198–1207, 1977.
[9] M. E. H. Ismail and D. H. Kelker, The Bessel polynomials and the student tdistribution,
SIAM J. Math. Anal. 7, 82–91, 1976.
[10] M. E. H. Ismail and M. E. Muldoon, Monotonicity of the zeros of a cross-product of
Bessel functions, SIAM J. Math. Anal. 9 (4), 759–767, 1978.
[11] Z.-X. Mao and J.-F. Tian, Monotonicity and complete monotonicity of some functions
involving the modified Bessel function of the second kind, C. R. Math. Acad. Sci. Paris
361, 217–235, 2023.
[12] M. Petrovic, Sur une équation fonctionnelle, Publ. Math. Univ. Belgrade 1, 149–156,
1932.
[13] R. A. Rosenbaum, Subadditive functions, Duke Math. J. 17 (1950), 227–242.
[14] J. Segura, Bounds for ratios of modified Bessel functions and associated Turán-type
inequalities, J. Math. Anal. Appl. 374 (2), 516–528, 2011.
[15] H. C. Simpson and S. J. Spector, Some monotonicity results for ratios of modified
Bessel functions, Quart. Appl. Math. 42 (1), 95–98, 1984.
[16] L. Trlifaj, Asymptotic ratios of Bessel functions of purely imaginary argument, Apl.
Mat. 19, 1–5, 1974.
[17] H. Van Haeringen, Bound states for r-2-like potentials in one and three dimensions,
J. Math. Phys. 19, 2171–2179, 1978.
[18] G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge University
Press, Cambridge, 1944.
[19] D. V. Widder, The Laplace Transform, Princeton University Press, Princeton, 1946.
[20] Z. Yang and J.-F. Tian, Monotonicity rules for the ratio of two Laplace transforms
with applications, J. Math. Anal. Appl. 470 (2), 821–845, 2019.
[21] Z.-H. Yang and J.-F. Tian, A new chain of inequalities involving the Toader-Qi,
logarithmic and exponential means, Appl. Anal. Discrete Math. 15 (2), 467–485, 2021.
[22] Z.-H. Yang and J.-F. Tian, Convexity of a ratio of the modified Bessel functions of
the second kind with applications, Proc. Amer. Math. Soc. 150 (7), 2997–3009, 2022.
[23] Z.-H. Yang and J.-F. Tian, Convexity of ratios of the modified Bessel functions of the
first kind with applications, Rev. Mat. Complut. 36 (3), 799–825, 2023.
[24] Z.-H. Yang and J.-F. Tian, The signs rule for the Laplace integrals with applications,
Indian J. Pure Appl. Math. https://doi.org/10.1007/s13226-023-00447-6.
[25] Z.-H. Yang, J.-F. Tian and M.-K. Wang, A positive answer to Bhatia–Li conjecture
on the monotonicity for a new mean in its parameter, Rev. R. Acad. Cienc. Exactas
Fís. Nat. Ser. A Mat. RACSAM 114 (3), Paper No. 126, 2020.
[26] Z.-H. Yang, J.-F. Tian and Y.-R. Zhu, A sharp lower bound for the complete elliptic
integrals of the first kind, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat.
RACSAM 115 (1), Paper No. 8, 17 pages, 2021.
[27] Z.-H. Yang and S.-Z. Zheng, The monotonicity and convexity for the ratios of modified
Bessel functions of the second kind and applications, Proc. Amer. Math. Soc. 145,
2943-2958, 2017.
[28] Z.-H. Yang and S.-Z. Zheng, Monotonicity and convexity of the ratios of the first kind
modified Bessel functions and applications, Math. Inequal. Appl. 21 (1), 107–125,
2018.
Hang Yang, Z., & Tian, J.-f. (2024). High order monotonicity of a ratio of the modified Bessel function with applications. Hacettepe Journal of Mathematics and Statistics, 53(6), 1659-1673. https://doi.org/10.15672/hujms.1244462
AMA
Hang Yang Z, Tian Jf. High order monotonicity of a ratio of the modified Bessel function with applications. Hacettepe Journal of Mathematics and Statistics. December 2024;53(6):1659-1673. doi:10.15672/hujms.1244462
Chicago
Hang Yang, Zhen, and Jing-feng Tian. “High Order Monotonicity of a Ratio of the Modified Bessel Function With Applications”. Hacettepe Journal of Mathematics and Statistics 53, no. 6 (December 2024): 1659-73. https://doi.org/10.15672/hujms.1244462.
EndNote
Hang Yang Z, Tian J-f (December 1, 2024) High order monotonicity of a ratio of the modified Bessel function with applications. Hacettepe Journal of Mathematics and Statistics 53 6 1659–1673.
IEEE
Z. Hang Yang and J.-f. Tian, “High order monotonicity of a ratio of the modified Bessel function with applications”, Hacettepe Journal of Mathematics and Statistics, vol. 53, no. 6, pp. 1659–1673, 2024, doi: 10.15672/hujms.1244462.
ISNAD
Hang Yang, Zhen - Tian, Jing-feng. “High Order Monotonicity of a Ratio of the Modified Bessel Function With Applications”. Hacettepe Journal of Mathematics and Statistics 53/6 (December 2024), 1659-1673. https://doi.org/10.15672/hujms.1244462.
JAMA
Hang Yang Z, Tian J-f. High order monotonicity of a ratio of the modified Bessel function with applications. Hacettepe Journal of Mathematics and Statistics. 2024;53:1659–1673.
MLA
Hang Yang, Zhen and Jing-feng Tian. “High Order Monotonicity of a Ratio of the Modified Bessel Function With Applications”. Hacettepe Journal of Mathematics and Statistics, vol. 53, no. 6, 2024, pp. 1659-73, doi:10.15672/hujms.1244462.
Vancouver
Hang Yang Z, Tian J-f. High order monotonicity of a ratio of the modified Bessel function with applications. Hacettepe Journal of Mathematics and Statistics. 2024;53(6):1659-73.