Research Article
BibTex RIS Cite

Torsion pairs and related modules over trivial ring extensions

Year 2024, , 1291 - 1304, 15.10.2024
https://doi.org/10.15672/hujms.1272122

Abstract

Let $R\ltimes M$ be a trivial extension of a ring $R$ by an $R$-$R$-bimodule $M$. We first study how to construct torsion pairs over $R\ltimes M$ from torsion pairs over $R$. Some characterizations of finitely generated (presented) modules, flat modules and coherent rings relative to a torsion pair over $R\ltimes M$ are obtained. Then we discuss the transfers of torsion pairs over $R\ltimes M$ to $R$. Finally, some applications are given in Morita context rings.

Supporting Institution

NSFC

Project Number

12171230, 12271249

References

  • [1] H. Bass, The Morita Theorems, Mimeographed Notes. University of Oregon, 1962.
  • [2] S.E. Dickson, A torsion theory for abelian categories, Trans. Amer. Math. Soc. 121, 223-235, 1966.
  • [3] N. Ding and J. Chen, Relative coherence and preenvelopes, Manuscripta Math. 81, 243-262, 1993.
  • [4] T. Dumitrescu, N. Mahdou and Y. Zahir, Radical factorization for trivial extensions and amalgamated duplication rings, J. Algebra Appl. 20, 2150025, 2021.
  • [5] C. Fan and H. Yao, Torsion pairs in triangulated categories, Adv. Pure Math. 3, 374-379, 2013.
  • [6] R.M. Fossum, P. Griffith and I. Reiten, Trivial Extensions of Abelian Categories, Homological Algebra of Trivial Extensions of Abelian Categories with Applications to Ring Theory. Lect. Notes in Math. 456, Springer-Verlag, Berlin, 1975.
  • [7] R. Göbel and J. Trlifaj, Approximations and Endomorphism Algebras of Modules, GEM 41, Walter de Gruyter, Berlin-New York, 2006.
  • [8] E.L. Green, On the presentation theory of rings in matrix form, Pacific J. Math. 100, 123-138, 1982.
  • [9] P. Krylov and A. Tuganbaev, Formal Matrices, Springer International Publishing, Switzerland, 2017.
  • [10] X. Ma and Z. Huang, Torsion pairs in recollements of abelian categories, Front. Math. China 13, 875-892, 2018.
  • [11] L. Mao, Silting and cosilting modules over trivial ring extensions, Comm. Algebra 51, 1532-1550, 2023.
  • [12] L. Mao, Homological properties of trivial ring extensions, J. Algebra Appl. 22, 2350265, 2023.
  • [13] K. Morita, Duality for modules and its applications to the theory of rings with minimum condition, Sci. Rep. Tokyo Kyoiku Diagaku Sect. A6, 83-142, 1958.
  • [14] M. Nagata, Local Rings, Interscience Tracts in Math. 13, Interscience New York, 1962.
  • [15] I. Palmér and J.E. Roos, Explicit formulae for the global homological dimensions of trivial extensions of rings, J. Algebra 27, 380-413, 1973.
  • [16] Y. Peng, X. Ma and Z. Huang, $\tau$-Tilting modules over triangular matrix artin algebras, Internat. J. Algebra Comput. 31, 639-661, 2021.
  • [17] I. Reiten, Trivial extensions and Gorenstein rings, Thesis, University of Illinois, Urbana, 1971.
  • [18] B. Stenström, Rings of Quotients, Springer, Berlin-Heidelberg-New York, 1975.
Year 2024, , 1291 - 1304, 15.10.2024
https://doi.org/10.15672/hujms.1272122

Abstract

Project Number

12171230, 12271249

References

  • [1] H. Bass, The Morita Theorems, Mimeographed Notes. University of Oregon, 1962.
  • [2] S.E. Dickson, A torsion theory for abelian categories, Trans. Amer. Math. Soc. 121, 223-235, 1966.
  • [3] N. Ding and J. Chen, Relative coherence and preenvelopes, Manuscripta Math. 81, 243-262, 1993.
  • [4] T. Dumitrescu, N. Mahdou and Y. Zahir, Radical factorization for trivial extensions and amalgamated duplication rings, J. Algebra Appl. 20, 2150025, 2021.
  • [5] C. Fan and H. Yao, Torsion pairs in triangulated categories, Adv. Pure Math. 3, 374-379, 2013.
  • [6] R.M. Fossum, P. Griffith and I. Reiten, Trivial Extensions of Abelian Categories, Homological Algebra of Trivial Extensions of Abelian Categories with Applications to Ring Theory. Lect. Notes in Math. 456, Springer-Verlag, Berlin, 1975.
  • [7] R. Göbel and J. Trlifaj, Approximations and Endomorphism Algebras of Modules, GEM 41, Walter de Gruyter, Berlin-New York, 2006.
  • [8] E.L. Green, On the presentation theory of rings in matrix form, Pacific J. Math. 100, 123-138, 1982.
  • [9] P. Krylov and A. Tuganbaev, Formal Matrices, Springer International Publishing, Switzerland, 2017.
  • [10] X. Ma and Z. Huang, Torsion pairs in recollements of abelian categories, Front. Math. China 13, 875-892, 2018.
  • [11] L. Mao, Silting and cosilting modules over trivial ring extensions, Comm. Algebra 51, 1532-1550, 2023.
  • [12] L. Mao, Homological properties of trivial ring extensions, J. Algebra Appl. 22, 2350265, 2023.
  • [13] K. Morita, Duality for modules and its applications to the theory of rings with minimum condition, Sci. Rep. Tokyo Kyoiku Diagaku Sect. A6, 83-142, 1958.
  • [14] M. Nagata, Local Rings, Interscience Tracts in Math. 13, Interscience New York, 1962.
  • [15] I. Palmér and J.E. Roos, Explicit formulae for the global homological dimensions of trivial extensions of rings, J. Algebra 27, 380-413, 1973.
  • [16] Y. Peng, X. Ma and Z. Huang, $\tau$-Tilting modules over triangular matrix artin algebras, Internat. J. Algebra Comput. 31, 639-661, 2021.
  • [17] I. Reiten, Trivial extensions and Gorenstein rings, Thesis, University of Illinois, Urbana, 1971.
  • [18] B. Stenström, Rings of Quotients, Springer, Berlin-Heidelberg-New York, 1975.
There are 18 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Lixin Mao 0000-0001-7225-928X

Project Number 12171230, 12271249
Early Pub Date January 10, 2024
Publication Date October 15, 2024
Published in Issue Year 2024

Cite

APA Mao, L. (2024). Torsion pairs and related modules over trivial ring extensions. Hacettepe Journal of Mathematics and Statistics, 53(5), 1291-1304. https://doi.org/10.15672/hujms.1272122
AMA Mao L. Torsion pairs and related modules over trivial ring extensions. Hacettepe Journal of Mathematics and Statistics. October 2024;53(5):1291-1304. doi:10.15672/hujms.1272122
Chicago Mao, Lixin. “Torsion Pairs and Related Modules over Trivial Ring Extensions”. Hacettepe Journal of Mathematics and Statistics 53, no. 5 (October 2024): 1291-1304. https://doi.org/10.15672/hujms.1272122.
EndNote Mao L (October 1, 2024) Torsion pairs and related modules over trivial ring extensions. Hacettepe Journal of Mathematics and Statistics 53 5 1291–1304.
IEEE L. Mao, “Torsion pairs and related modules over trivial ring extensions”, Hacettepe Journal of Mathematics and Statistics, vol. 53, no. 5, pp. 1291–1304, 2024, doi: 10.15672/hujms.1272122.
ISNAD Mao, Lixin. “Torsion Pairs and Related Modules over Trivial Ring Extensions”. Hacettepe Journal of Mathematics and Statistics 53/5 (October 2024), 1291-1304. https://doi.org/10.15672/hujms.1272122.
JAMA Mao L. Torsion pairs and related modules over trivial ring extensions. Hacettepe Journal of Mathematics and Statistics. 2024;53:1291–1304.
MLA Mao, Lixin. “Torsion Pairs and Related Modules over Trivial Ring Extensions”. Hacettepe Journal of Mathematics and Statistics, vol. 53, no. 5, 2024, pp. 1291-04, doi:10.15672/hujms.1272122.
Vancouver Mao L. Torsion pairs and related modules over trivial ring extensions. Hacettepe Journal of Mathematics and Statistics. 2024;53(5):1291-304.