Let $R\ltimes M$ be a trivial extension of a ring $R$ by an $R$-$R$-bimodule $M$. We first study how to construct torsion pairs over $R\ltimes M$ from torsion pairs over $R$. Some characterizations of finitely generated (presented) modules, flat modules and coherent rings relative to a torsion pair over $R\ltimes M$ are obtained. Then we discuss the transfers of torsion pairs over $R\ltimes M$ to $R$. Finally, some applications are given in Morita context rings.
[1] H. Bass, The Morita Theorems, Mimeographed Notes. University of Oregon, 1962.
[2] S.E. Dickson, A torsion theory for abelian categories, Trans. Amer. Math. Soc. 121,
223-235, 1966.
[3] N. Ding and J. Chen, Relative coherence and preenvelopes, Manuscripta Math. 81,
243-262, 1993.
[4] T. Dumitrescu, N. Mahdou and Y. Zahir, Radical factorization for trivial extensions
and amalgamated duplication rings, J. Algebra Appl. 20, 2150025, 2021.
[5] C. Fan and H. Yao, Torsion pairs in triangulated categories, Adv. Pure Math. 3,
374-379, 2013.
[6] R.M. Fossum, P. Griffith and I. Reiten, Trivial Extensions of Abelian Categories,
Homological Algebra of Trivial Extensions of Abelian Categories with Applications
to Ring Theory. Lect. Notes in Math. 456, Springer-Verlag, Berlin, 1975.
[7] R. Göbel and J. Trlifaj, Approximations and Endomorphism Algebras of Modules,
GEM 41, Walter de Gruyter, Berlin-New York, 2006.
[8] E.L. Green, On the presentation theory of rings in matrix form, Pacific J. Math. 100,
123-138, 1982.
[9] P. Krylov and A. Tuganbaev, Formal Matrices, Springer International Publishing,
Switzerland, 2017.
[10] X. Ma and Z. Huang, Torsion pairs in recollements of abelian categories, Front. Math.
China 13, 875-892, 2018.
[11] L. Mao, Silting and cosilting modules over trivial ring extensions, Comm. Algebra 51,
1532-1550, 2023.
[12] L. Mao, Homological properties of trivial ring extensions, J. Algebra Appl. 22,
2350265, 2023.
[13] K. Morita, Duality for modules and its applications to the theory of rings with minimum
condition, Sci. Rep. Tokyo Kyoiku Diagaku Sect. A6, 83-142, 1958.
[14] M. Nagata, Local Rings, Interscience Tracts in Math. 13, Interscience New York,
1962.
[15] I. Palmér and J.E. Roos, Explicit formulae for the global homological dimensions of
trivial extensions of rings, J. Algebra 27, 380-413, 1973.
[16] Y. Peng, X. Ma and Z. Huang, $\tau$-Tilting modules over triangular matrix artin algebras,
Internat. J. Algebra Comput. 31, 639-661, 2021.
[17] I. Reiten, Trivial extensions and Gorenstein rings, Thesis, University of Illinois, Urbana,
1971.
[18] B. Stenström, Rings of Quotients, Springer, Berlin-Heidelberg-New York, 1975.
[1] H. Bass, The Morita Theorems, Mimeographed Notes. University of Oregon, 1962.
[2] S.E. Dickson, A torsion theory for abelian categories, Trans. Amer. Math. Soc. 121,
223-235, 1966.
[3] N. Ding and J. Chen, Relative coherence and preenvelopes, Manuscripta Math. 81,
243-262, 1993.
[4] T. Dumitrescu, N. Mahdou and Y. Zahir, Radical factorization for trivial extensions
and amalgamated duplication rings, J. Algebra Appl. 20, 2150025, 2021.
[5] C. Fan and H. Yao, Torsion pairs in triangulated categories, Adv. Pure Math. 3,
374-379, 2013.
[6] R.M. Fossum, P. Griffith and I. Reiten, Trivial Extensions of Abelian Categories,
Homological Algebra of Trivial Extensions of Abelian Categories with Applications
to Ring Theory. Lect. Notes in Math. 456, Springer-Verlag, Berlin, 1975.
[7] R. Göbel and J. Trlifaj, Approximations and Endomorphism Algebras of Modules,
GEM 41, Walter de Gruyter, Berlin-New York, 2006.
[8] E.L. Green, On the presentation theory of rings in matrix form, Pacific J. Math. 100,
123-138, 1982.
[9] P. Krylov and A. Tuganbaev, Formal Matrices, Springer International Publishing,
Switzerland, 2017.
[10] X. Ma and Z. Huang, Torsion pairs in recollements of abelian categories, Front. Math.
China 13, 875-892, 2018.
[11] L. Mao, Silting and cosilting modules over trivial ring extensions, Comm. Algebra 51,
1532-1550, 2023.
[12] L. Mao, Homological properties of trivial ring extensions, J. Algebra Appl. 22,
2350265, 2023.
[13] K. Morita, Duality for modules and its applications to the theory of rings with minimum
condition, Sci. Rep. Tokyo Kyoiku Diagaku Sect. A6, 83-142, 1958.
[14] M. Nagata, Local Rings, Interscience Tracts in Math. 13, Interscience New York,
1962.
[15] I. Palmér and J.E. Roos, Explicit formulae for the global homological dimensions of
trivial extensions of rings, J. Algebra 27, 380-413, 1973.
[16] Y. Peng, X. Ma and Z. Huang, $\tau$-Tilting modules over triangular matrix artin algebras,
Internat. J. Algebra Comput. 31, 639-661, 2021.
[17] I. Reiten, Trivial extensions and Gorenstein rings, Thesis, University of Illinois, Urbana,
1971.
[18] B. Stenström, Rings of Quotients, Springer, Berlin-Heidelberg-New York, 1975.
Mao, L. (2024). Torsion pairs and related modules over trivial ring extensions. Hacettepe Journal of Mathematics and Statistics, 53(5), 1291-1304. https://doi.org/10.15672/hujms.1272122
AMA
Mao L. Torsion pairs and related modules over trivial ring extensions. Hacettepe Journal of Mathematics and Statistics. October 2024;53(5):1291-1304. doi:10.15672/hujms.1272122
Chicago
Mao, Lixin. “Torsion Pairs and Related Modules over Trivial Ring Extensions”. Hacettepe Journal of Mathematics and Statistics 53, no. 5 (October 2024): 1291-1304. https://doi.org/10.15672/hujms.1272122.
EndNote
Mao L (October 1, 2024) Torsion pairs and related modules over trivial ring extensions. Hacettepe Journal of Mathematics and Statistics 53 5 1291–1304.
IEEE
L. Mao, “Torsion pairs and related modules over trivial ring extensions”, Hacettepe Journal of Mathematics and Statistics, vol. 53, no. 5, pp. 1291–1304, 2024, doi: 10.15672/hujms.1272122.
ISNAD
Mao, Lixin. “Torsion Pairs and Related Modules over Trivial Ring Extensions”. Hacettepe Journal of Mathematics and Statistics 53/5 (October 2024), 1291-1304. https://doi.org/10.15672/hujms.1272122.
JAMA
Mao L. Torsion pairs and related modules over trivial ring extensions. Hacettepe Journal of Mathematics and Statistics. 2024;53:1291–1304.
MLA
Mao, Lixin. “Torsion Pairs and Related Modules over Trivial Ring Extensions”. Hacettepe Journal of Mathematics and Statistics, vol. 53, no. 5, 2024, pp. 1291-04, doi:10.15672/hujms.1272122.
Vancouver
Mao L. Torsion pairs and related modules over trivial ring extensions. Hacettepe Journal of Mathematics and Statistics. 2024;53(5):1291-304.