Research Article
BibTex RIS Cite

Spectrum, homomorphisms and multipliers of Lau product of Banach algebras

Year 2024, , 777 - 787, 27.06.2024
https://doi.org/10.15672/hujms.1287866

Abstract

Given Banach algebras $A$, $B$ and a continuous homomorphism $\theta:B\longrightarrow A$ with $\Vert\theta\Vert \leq1$, we obtain characterization of spectrum, homomorphisms and multipliers of $A\times_{\theta}B$, which is a strongly splitting Banach algebra extension of $B$ by $A$. Also we characterize the semisimplicity of these algebras.

References

  • [1] F. Abtahi, A. Ghafarpanah and A. Rejali, Biprojectivity and biflatness of Lau product of Banach algebras defined by a Banach algebras morphism, Bull. Aust. Math. Soc. 91 (1), 134-144, 2015.
  • [2] S. J. Bhatt and P. A. Dabhi, Arens regularity and amenability of Lau product of Banach algebras defined by a Banach algebra morphism, Bull. Aust. Math. Soc. 87, 195-206, 2013.
  • [3] P. A. Dabhi, Multipliers of perturbed Cartesian products with application to BESproperty, Acta. Math. Hungar 149 (1), 58-66, 2016.
  • [4] P. A. Dabhi and S. K. Patel Spectral properties and stability of perturbed Cartesian products with application to BES-property, Proc. Indian Acad. Sci. Math. Sci. 127 (4), 673-687, 2017.
  • [5] H. G. Dales, Banach algebras and automatic continuity, London Math. Soc., 24, Clarendon Press, Oxford, 2000.
  • [6] H. R. Ebrahimi Vishki and A. R. Khoddami, Character inner amenability of certain Banach algebras, Colloq. Math. 122 (2), 225-232, 2011.
  • [7] F. Gourdeau, Amenability and the second dual of a Banach algebras, Studia Math. 125 (3), 75-81, 1997.
  • [8] A. R. Khoddami and H. R. Ebrahimi Vishki, Biflatness and biprojectivity of Lau product of Banach algebras, Bull. Iranian Math. Soc. 39 (3), 559-568, 2013.
  • [9] A. T. M. Lau, Analysis on a class of Banach algebras with application to harmonic analysis on locally compact groups and semigroups, Fund. Math. 118 (3), 161-175, 1983.
  • [10] A. Minapoor, A. Bodaghi and O.T. Mewomo, Ideal Connes-amenability of Lau product of Banach algebras, Eurasian Math. J. 12 (4), 74-81, 2021.
  • [11] M. S. Monfared, On certain products of Banach algebras with application to harmonic analysis, Studia Math. 178 (3), 277-294, 2007.
  • [12] G. J. Murphy, $C^*$-algebras and operator theory, Academic Press, 1990.
  • [13] M. Nemati and H. Javanshiri, Some homological and cohomological notions on T-Lau product of Banach algebras, Banach J. Math. Anal. 9 (2), 183-195, 2015.
  • [14] S. E. Takahasi, H. Takagi and T. Miura, A characterization of multipliers of a Lau algebras constructed by semisimple commutative Banach algebras, Taiwan J. Math. 20 (6), 1401-1415, 2016.
Year 2024, , 777 - 787, 27.06.2024
https://doi.org/10.15672/hujms.1287866

Abstract

References

  • [1] F. Abtahi, A. Ghafarpanah and A. Rejali, Biprojectivity and biflatness of Lau product of Banach algebras defined by a Banach algebras morphism, Bull. Aust. Math. Soc. 91 (1), 134-144, 2015.
  • [2] S. J. Bhatt and P. A. Dabhi, Arens regularity and amenability of Lau product of Banach algebras defined by a Banach algebra morphism, Bull. Aust. Math. Soc. 87, 195-206, 2013.
  • [3] P. A. Dabhi, Multipliers of perturbed Cartesian products with application to BESproperty, Acta. Math. Hungar 149 (1), 58-66, 2016.
  • [4] P. A. Dabhi and S. K. Patel Spectral properties and stability of perturbed Cartesian products with application to BES-property, Proc. Indian Acad. Sci. Math. Sci. 127 (4), 673-687, 2017.
  • [5] H. G. Dales, Banach algebras and automatic continuity, London Math. Soc., 24, Clarendon Press, Oxford, 2000.
  • [6] H. R. Ebrahimi Vishki and A. R. Khoddami, Character inner amenability of certain Banach algebras, Colloq. Math. 122 (2), 225-232, 2011.
  • [7] F. Gourdeau, Amenability and the second dual of a Banach algebras, Studia Math. 125 (3), 75-81, 1997.
  • [8] A. R. Khoddami and H. R. Ebrahimi Vishki, Biflatness and biprojectivity of Lau product of Banach algebras, Bull. Iranian Math. Soc. 39 (3), 559-568, 2013.
  • [9] A. T. M. Lau, Analysis on a class of Banach algebras with application to harmonic analysis on locally compact groups and semigroups, Fund. Math. 118 (3), 161-175, 1983.
  • [10] A. Minapoor, A. Bodaghi and O.T. Mewomo, Ideal Connes-amenability of Lau product of Banach algebras, Eurasian Math. J. 12 (4), 74-81, 2021.
  • [11] M. S. Monfared, On certain products of Banach algebras with application to harmonic analysis, Studia Math. 178 (3), 277-294, 2007.
  • [12] G. J. Murphy, $C^*$-algebras and operator theory, Academic Press, 1990.
  • [13] M. Nemati and H. Javanshiri, Some homological and cohomological notions on T-Lau product of Banach algebras, Banach J. Math. Anal. 9 (2), 183-195, 2015.
  • [14] S. E. Takahasi, H. Takagi and T. Miura, A characterization of multipliers of a Lau algebras constructed by semisimple commutative Banach algebras, Taiwan J. Math. 20 (6), 1401-1415, 2016.
There are 14 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Mohammad Valaei 0000-0001-8362-8490

Abbas Zıvarı-kazempour

Early Pub Date January 10, 2024
Publication Date June 27, 2024
Published in Issue Year 2024

Cite

APA Valaei, M., & Zıvarı-kazempour, A. (2024). Spectrum, homomorphisms and multipliers of Lau product of Banach algebras. Hacettepe Journal of Mathematics and Statistics, 53(3), 777-787. https://doi.org/10.15672/hujms.1287866
AMA Valaei M, Zıvarı-kazempour A. Spectrum, homomorphisms and multipliers of Lau product of Banach algebras. Hacettepe Journal of Mathematics and Statistics. June 2024;53(3):777-787. doi:10.15672/hujms.1287866
Chicago Valaei, Mohammad, and Abbas Zıvarı-kazempour. “Spectrum, Homomorphisms and Multipliers of Lau Product of Banach Algebras”. Hacettepe Journal of Mathematics and Statistics 53, no. 3 (June 2024): 777-87. https://doi.org/10.15672/hujms.1287866.
EndNote Valaei M, Zıvarı-kazempour A (June 1, 2024) Spectrum, homomorphisms and multipliers of Lau product of Banach algebras. Hacettepe Journal of Mathematics and Statistics 53 3 777–787.
IEEE M. Valaei and A. Zıvarı-kazempour, “Spectrum, homomorphisms and multipliers of Lau product of Banach algebras”, Hacettepe Journal of Mathematics and Statistics, vol. 53, no. 3, pp. 777–787, 2024, doi: 10.15672/hujms.1287866.
ISNAD Valaei, Mohammad - Zıvarı-kazempour, Abbas. “Spectrum, Homomorphisms and Multipliers of Lau Product of Banach Algebras”. Hacettepe Journal of Mathematics and Statistics 53/3 (June 2024), 777-787. https://doi.org/10.15672/hujms.1287866.
JAMA Valaei M, Zıvarı-kazempour A. Spectrum, homomorphisms and multipliers of Lau product of Banach algebras. Hacettepe Journal of Mathematics and Statistics. 2024;53:777–787.
MLA Valaei, Mohammad and Abbas Zıvarı-kazempour. “Spectrum, Homomorphisms and Multipliers of Lau Product of Banach Algebras”. Hacettepe Journal of Mathematics and Statistics, vol. 53, no. 3, 2024, pp. 777-8, doi:10.15672/hujms.1287866.
Vancouver Valaei M, Zıvarı-kazempour A. Spectrum, homomorphisms and multipliers of Lau product of Banach algebras. Hacettepe Journal of Mathematics and Statistics. 2024;53(3):777-8.