Let $ \mathfrak{B}$ be a $\ast$-algebra with the unity and a nontrivial projection. In the present paper, we show under certain restrictions that if a map $\Psi$ : $ \mathfrak{B}$ $\to$ $ \mathfrak{B}$ satisfies $ \Psi ( [E \diamond K, D]_\ast ) = [\Psi( E) \diamond K, D]_\ast + [E \diamond \Psi (K), D]_\ast + [E \diamond K, \Psi (D)]_\ast$ for all $ E, K, D \in \mathfrak{B} $, then $\Psi$ is an additive $\ast$-derivation.
| Primary Language | English |
|---|---|
| Subjects | Mathematical Sciences |
| Journal Section | Research Article |
| Authors | |
| Early Pub Date | April 14, 2024 |
| Publication Date | February 28, 2025 |
| Published in Issue | Year 2025 Volume: 54 Issue: 1 |