Research Article
BibTex RIS Cite

Estimation in functional partially linear spatial autoregressive model

Year 2024, , 1196 - 1217, 27.08.2024
https://doi.org/10.15672/hujms.1324888

Abstract

Functional regression has been a hot topic in statistical research. However, not much work has been done when response variables are cross-sectionally dependent variables and explanatory variables contain a real-valued scalar variable and a functional-valued random variable. In this paper, we consider a new functional partially linear spatial autoregressive model. Based on the functional principal components analysis and basis function approximation, we obtain the estimators of the unknown parameter and functions through the instrumental variables estimation method. The asymptotic normality and convergence rates of estimators are proved under some mild conditions. In addition, we illustrate the finite sample performance of the proposed estimation method through simulation study and a real data analysis.

References

  • [1] L. Anselin, Spatial Econometrics: Methods and Models, Kluwer, Dordrecht, NL, 1988.
  • [2] A.C. Case, Spatial patterns in household demand, Econometrica 59 (4), 953-965, 1991.
  • [3] J.M. Chiou and H.G. Müller, Linear manifold modelling of multivariate functional data, J. R. Stat. Soc. B 76 (3), 605-626, 2014.
  • [4] A. Cliff and J.K. Ord, Spatial Autocorrelation, Pion, London, UK, 1973.
  • [5] N.A. Cressie, Statistics for Spatial Data, John Wiley & Sons, New York, USA, 1993.
  • [6] J. Du, X.Q. Sun, R.Y. Cao and Z.Z. Zhang, Statistical inference for partially linear additive spatial autoregressive models, Spat. Stat. 25, 52-67, 2018.
  • [7] Y.Y. Fan, G.M. James and P. Radchenko, Functional additive regression, Ann. Stat. 43 (5), 2296-2325, 2015.
  • [8] S.Y. Feng and L.G. Xue, Partially functional linear varying coefficient model, Statistics 50 (4), 717-732, 2016.
  • [9] P. Hall and G. Hooker, Truncated linear models for functional data, J. R. Stat. Soc. B 78 (3), 637-653, 2016.
  • [10] P. Hall and J.L. Horowitz, Methodology and convergence rates for functional linear regression, Ann. Stat. 35 (1), 70-91, 2007.
  • [11] Y.P. Hu, S.Y. Wu, S.Y. Feng and J.L. Jin, Estimation in partial functional linear spatial autoregressive model, Mathematics 8 (10), Doi: 10.3390/math8101680, 2020.
  • [12] Y.P. Hu, L.G. Xue, J. Zhao and L.Y. Zhang, Skew-normal partial functional linear model and homogeneity test, J. Stat. Plan. Infer. 204, 116-127, 2020.
  • [13] J. Huang, J.L. Horowitz and F. R. Wei, Variable selection in nonparametric additive models, Ann. Stat. 38 (4), 2282-2313, 2010.
  • [14] J.Z. Huang and H. Shen, Functional coefficient regression models for non-linear time series: a polynomial spline approach, Scand. J. Stat. 31 (4), 515-534, 2004.
  • [15] H.H. Kelejian and I.R. Prucha, A generalized spatial two-stage least squares procedure for estimating a spatial autoregressive model with autoregressive disturbances, J. Real. Estate. Finance 17 (1), 99-121, 1998.
  • [16] H.H. Kelejian and I.R. Prucha, Specification and estimation of spatial autoregressive models with autoregressive and heteroskedastic disturbances, J. Econometrics 157 (1), 53-67, 2010.
  • [17] D. Kong, K.J. Xue, F. Yao and H.H. Zhang, Partially functional linear regression in high dimensions, Biometrika 103 (1), 147-159, 2016.
  • [18] L.F. Lee, Best spatial two-tage least squares estimators for a spatial autoregressive model with autoregressive disturbances, Economet. Rev. 22 (4), 307-335, 2003.
  • [19] L.F. Lee, Asymptotic distributions of quasi-maximum likelihood estimators for spatial autoregressive models, Econometrica 72 (6), 1899-1925, 2004.
  • [20] H. Lian, Functional partial linear model, J. Nonparametr. Stat. 23 (1), 115-128, 2011.
  • [21] R.Y. Long, T.X. Shao and H. Chen, Spatial econometric analysis of China’s provincelevel industrial carbon productivity and its influencing factors, Appl. Energ. 166, 210- 219, 2016.
  • [22] S.J. Ma, Estimation and inference in functional single-index models, Ann. I. Stat. Math. 68 (1), 181-208, 2016.
  • [23] E. Malikov and Y. Sun, Semiparametric estimation and testing of smooth coefficient spatial autoregressive models, J. Econometrics 199 (1), 12-34, 2017.
  • [24] J.O. Ramsay and B.W. Silverman, Functional Data Analysis, Springer, New York, USA, 1997.
  • [25] L.L. Schumaker, Spline Function: Basic theory, Wiley, New York, USA, 1981. [26] H. Shin, Partial functional linear regression, J. Stat. Plan. Infer. 139 (10), 3405-3418, 2009.
  • [27] C.J. Stone, Optimal rates of convergence for nonparametric estimators, Ann. Stat. 8 (6), 1348-1360, 1980.
  • [28] C.J. Stone, Additive regression and other nonparametric models, Ann. Stat. 13 (2), 689-705, 1985.
  • [29] L.J. Su and S.N. Jin, Profile quasi-maximum likelihood estimation of partially linear spatial autoregressive models, J. Econometrics 157 (1), 18-33, 2010.
  • [30] Q.G. Tang, Estimation for semi-functional linear regression, Statistics 49 (6), 1262- 1278, 2015.
  • [31] F. Yao, H.G. Müller and J.L. Wang, Functional data analysis for sparse longitudinal data, J. Am. Stat. Assoc. 100 (470), 577-590, 2005.
  • [32] P. Yu, J. Du and Z.Z. Zhang, Single-index partially functional linear regression model, Stat. Pap. 61 (3), 1107-1123, 2020.
  • [33] Y.Q. Zhang and D.M. Shen, Estimation of semi-parametric varying-coefficient spatial panel data models with random-effects, J. Stat. Plan. Infer. 159, 64-80, 2015.
  • [34] J.J. Zhou and M. Chen, Spline estimators for semi-functional linear model, Stat. Probabil. Lett. 82 (3), 505-513, 2012.
Year 2024, , 1196 - 1217, 27.08.2024
https://doi.org/10.15672/hujms.1324888

Abstract

References

  • [1] L. Anselin, Spatial Econometrics: Methods and Models, Kluwer, Dordrecht, NL, 1988.
  • [2] A.C. Case, Spatial patterns in household demand, Econometrica 59 (4), 953-965, 1991.
  • [3] J.M. Chiou and H.G. Müller, Linear manifold modelling of multivariate functional data, J. R. Stat. Soc. B 76 (3), 605-626, 2014.
  • [4] A. Cliff and J.K. Ord, Spatial Autocorrelation, Pion, London, UK, 1973.
  • [5] N.A. Cressie, Statistics for Spatial Data, John Wiley & Sons, New York, USA, 1993.
  • [6] J. Du, X.Q. Sun, R.Y. Cao and Z.Z. Zhang, Statistical inference for partially linear additive spatial autoregressive models, Spat. Stat. 25, 52-67, 2018.
  • [7] Y.Y. Fan, G.M. James and P. Radchenko, Functional additive regression, Ann. Stat. 43 (5), 2296-2325, 2015.
  • [8] S.Y. Feng and L.G. Xue, Partially functional linear varying coefficient model, Statistics 50 (4), 717-732, 2016.
  • [9] P. Hall and G. Hooker, Truncated linear models for functional data, J. R. Stat. Soc. B 78 (3), 637-653, 2016.
  • [10] P. Hall and J.L. Horowitz, Methodology and convergence rates for functional linear regression, Ann. Stat. 35 (1), 70-91, 2007.
  • [11] Y.P. Hu, S.Y. Wu, S.Y. Feng and J.L. Jin, Estimation in partial functional linear spatial autoregressive model, Mathematics 8 (10), Doi: 10.3390/math8101680, 2020.
  • [12] Y.P. Hu, L.G. Xue, J. Zhao and L.Y. Zhang, Skew-normal partial functional linear model and homogeneity test, J. Stat. Plan. Infer. 204, 116-127, 2020.
  • [13] J. Huang, J.L. Horowitz and F. R. Wei, Variable selection in nonparametric additive models, Ann. Stat. 38 (4), 2282-2313, 2010.
  • [14] J.Z. Huang and H. Shen, Functional coefficient regression models for non-linear time series: a polynomial spline approach, Scand. J. Stat. 31 (4), 515-534, 2004.
  • [15] H.H. Kelejian and I.R. Prucha, A generalized spatial two-stage least squares procedure for estimating a spatial autoregressive model with autoregressive disturbances, J. Real. Estate. Finance 17 (1), 99-121, 1998.
  • [16] H.H. Kelejian and I.R. Prucha, Specification and estimation of spatial autoregressive models with autoregressive and heteroskedastic disturbances, J. Econometrics 157 (1), 53-67, 2010.
  • [17] D. Kong, K.J. Xue, F. Yao and H.H. Zhang, Partially functional linear regression in high dimensions, Biometrika 103 (1), 147-159, 2016.
  • [18] L.F. Lee, Best spatial two-tage least squares estimators for a spatial autoregressive model with autoregressive disturbances, Economet. Rev. 22 (4), 307-335, 2003.
  • [19] L.F. Lee, Asymptotic distributions of quasi-maximum likelihood estimators for spatial autoregressive models, Econometrica 72 (6), 1899-1925, 2004.
  • [20] H. Lian, Functional partial linear model, J. Nonparametr. Stat. 23 (1), 115-128, 2011.
  • [21] R.Y. Long, T.X. Shao and H. Chen, Spatial econometric analysis of China’s provincelevel industrial carbon productivity and its influencing factors, Appl. Energ. 166, 210- 219, 2016.
  • [22] S.J. Ma, Estimation and inference in functional single-index models, Ann. I. Stat. Math. 68 (1), 181-208, 2016.
  • [23] E. Malikov and Y. Sun, Semiparametric estimation and testing of smooth coefficient spatial autoregressive models, J. Econometrics 199 (1), 12-34, 2017.
  • [24] J.O. Ramsay and B.W. Silverman, Functional Data Analysis, Springer, New York, USA, 1997.
  • [25] L.L. Schumaker, Spline Function: Basic theory, Wiley, New York, USA, 1981. [26] H. Shin, Partial functional linear regression, J. Stat. Plan. Infer. 139 (10), 3405-3418, 2009.
  • [27] C.J. Stone, Optimal rates of convergence for nonparametric estimators, Ann. Stat. 8 (6), 1348-1360, 1980.
  • [28] C.J. Stone, Additive regression and other nonparametric models, Ann. Stat. 13 (2), 689-705, 1985.
  • [29] L.J. Su and S.N. Jin, Profile quasi-maximum likelihood estimation of partially linear spatial autoregressive models, J. Econometrics 157 (1), 18-33, 2010.
  • [30] Q.G. Tang, Estimation for semi-functional linear regression, Statistics 49 (6), 1262- 1278, 2015.
  • [31] F. Yao, H.G. Müller and J.L. Wang, Functional data analysis for sparse longitudinal data, J. Am. Stat. Assoc. 100 (470), 577-590, 2005.
  • [32] P. Yu, J. Du and Z.Z. Zhang, Single-index partially functional linear regression model, Stat. Pap. 61 (3), 1107-1123, 2020.
  • [33] Y.Q. Zhang and D.M. Shen, Estimation of semi-parametric varying-coefficient spatial panel data models with random-effects, J. Stat. Plan. Infer. 159, 64-80, 2015.
  • [34] J.J. Zhou and M. Chen, Spline estimators for semi-functional linear model, Stat. Probabil. Lett. 82 (3), 505-513, 2012.
There are 33 citations in total.

Details

Primary Language English
Subjects Statistical Theory, Spatial Statistics
Journal Section Statistics
Authors

Yuping Hu This is me 0000-0003-0168-0661

Siyu Wu This is me 0000-0002-9232-1404

Sanying Feng 0000-0002-4599-4489

Early Pub Date August 7, 2024
Publication Date August 27, 2024
Published in Issue Year 2024

Cite

APA Hu, Y., Wu, S., & Feng, S. (2024). Estimation in functional partially linear spatial autoregressive model. Hacettepe Journal of Mathematics and Statistics, 53(4), 1196-1217. https://doi.org/10.15672/hujms.1324888
AMA Hu Y, Wu S, Feng S. Estimation in functional partially linear spatial autoregressive model. Hacettepe Journal of Mathematics and Statistics. August 2024;53(4):1196-1217. doi:10.15672/hujms.1324888
Chicago Hu, Yuping, Siyu Wu, and Sanying Feng. “Estimation in Functional Partially Linear Spatial Autoregressive Model”. Hacettepe Journal of Mathematics and Statistics 53, no. 4 (August 2024): 1196-1217. https://doi.org/10.15672/hujms.1324888.
EndNote Hu Y, Wu S, Feng S (August 1, 2024) Estimation in functional partially linear spatial autoregressive model. Hacettepe Journal of Mathematics and Statistics 53 4 1196–1217.
IEEE Y. Hu, S. Wu, and S. Feng, “Estimation in functional partially linear spatial autoregressive model”, Hacettepe Journal of Mathematics and Statistics, vol. 53, no. 4, pp. 1196–1217, 2024, doi: 10.15672/hujms.1324888.
ISNAD Hu, Yuping et al. “Estimation in Functional Partially Linear Spatial Autoregressive Model”. Hacettepe Journal of Mathematics and Statistics 53/4 (August 2024), 1196-1217. https://doi.org/10.15672/hujms.1324888.
JAMA Hu Y, Wu S, Feng S. Estimation in functional partially linear spatial autoregressive model. Hacettepe Journal of Mathematics and Statistics. 2024;53:1196–1217.
MLA Hu, Yuping et al. “Estimation in Functional Partially Linear Spatial Autoregressive Model”. Hacettepe Journal of Mathematics and Statistics, vol. 53, no. 4, 2024, pp. 1196-17, doi:10.15672/hujms.1324888.
Vancouver Hu Y, Wu S, Feng S. Estimation in functional partially linear spatial autoregressive model. Hacettepe Journal of Mathematics and Statistics. 2024;53(4):1196-217.