Research Article
BibTex RIS Cite

Year 2025, Volume: 54 Issue: 6, 2322 - 2325, 30.12.2025
https://doi.org/10.15672/hujms.1451185

Abstract

References

  • [1] L. Buhovsky, The Maslov class of Lagrangian tori and quantum products in Floer cohomology, Journal of Topology and Analysis 2(1), 57-75, 2010.
  • [2] U. Frauenfelder and F. Shlenk, Hamiltonian Dynamics on Convex Symplectic Manifolds, Israel Journal of Mathematics 159, 1-56, 2007.
  • [3] M. Gromov, Pseudo-holomorphic curves in symplectic manifolds, Inventiones Mathematicae 82, 307-347, 1985.
  • [4] L. Guth, Symplectic embeddings of polydisks, Invent. Math. 172 (3), 477-489, 2008.
  • [5] R. Hind and E. Kerman, New obstructions to symplectic embeddings, Invent. Math. 196(2), 383-452, 2014.
  • [6] M. Hutchings, Recent progress on symplectic embedding problems in four dimensions, Proc. Natl. Acad. Sci. USA 108(20), 8093-8099, 2011.
  • [7] M. Hutchings, Beyond ECH capacities Geom. Topol. 20(2), 1085-1126, 2016.
  • [8] F. Lalonde and D. McDuff, The Geometry of Symplectic Energy, Annals of Mathematics 141(2), 349-371, 1995.
  • [9] F. Lalonde, and D. McDuff, Local Non-squeezing Theorems and Stability, Geometric and Functional Analysis 5(2), 364-386, 1995.
  • [10] D. McDuff, Symplectic Topology Today, AMS Joint Mathematics Meeting, Baltimore, Colloquium Lectures, 2014. Available online: http://jointmathematicsmeetings. org/meetings/national/jmm2014/colloqnov2.pdf
  • [11] D. McDuff and D. Salamon, J-holomorphic Curves and Symplectic Topology, Colloquium Publications Vol. 52, AMS, Providence RI, 2004.
  • [12] D. McDuff and D. Salamon, Introduction to Symplectic Topology, Oxford University Press, 2017.
  • [13] Y. Ostrover and G.B. Vinicius, Symplectic embeddings of the `p-sum of two discs J. Topol. Anal. 14(4), 793-821, 2022.
  • [14] Á. Pelayo and S.V. Ngoc, Sharp symplectic embeddings of cylinders Indag. Math. (N.S.) 27(1), 307-317, 2016.
  • [15] L. Polterovich, The Geometry of the Group of Symplectic Diffeomorphisms, Birkhäuser Basel, 2001.
  • [16] F. Schlenk, Symplectic embedding problems, old and new, Bull. Amer. Math. Soc. (N.S.) 55(2), 139-182, 2018.
  • [17] J. Swoboda, and F. Ziltener, A symplectically non-squeezable small set and the regular coisotropic capacity, J. Symplectic Geom. 11(4), 509-523, 2013., 2010.

Symplectic embeddings into cylinders for certain symplectic manifolds

Year 2025, Volume: 54 Issue: 6, 2322 - 2325, 30.12.2025
https://doi.org/10.15672/hujms.1451185

Abstract

We present a proof of a result on displaceability of subsets of symplectic manifolds satisfying certain conditions one of which is that the subset is precompact in a connected neighborhood that symplectically embeds into $\mathbb{R}^{2n}$. The proof utilizes an inequality between the displacement energy and the cylindrical capacity for subsets of $\mathbb{R}^{2n}$ to obtain an inequality for subsets of the symplectic manifold. We also state a corollary which utilizes other results on nondisplaceable Lagrangians.

References

  • [1] L. Buhovsky, The Maslov class of Lagrangian tori and quantum products in Floer cohomology, Journal of Topology and Analysis 2(1), 57-75, 2010.
  • [2] U. Frauenfelder and F. Shlenk, Hamiltonian Dynamics on Convex Symplectic Manifolds, Israel Journal of Mathematics 159, 1-56, 2007.
  • [3] M. Gromov, Pseudo-holomorphic curves in symplectic manifolds, Inventiones Mathematicae 82, 307-347, 1985.
  • [4] L. Guth, Symplectic embeddings of polydisks, Invent. Math. 172 (3), 477-489, 2008.
  • [5] R. Hind and E. Kerman, New obstructions to symplectic embeddings, Invent. Math. 196(2), 383-452, 2014.
  • [6] M. Hutchings, Recent progress on symplectic embedding problems in four dimensions, Proc. Natl. Acad. Sci. USA 108(20), 8093-8099, 2011.
  • [7] M. Hutchings, Beyond ECH capacities Geom. Topol. 20(2), 1085-1126, 2016.
  • [8] F. Lalonde and D. McDuff, The Geometry of Symplectic Energy, Annals of Mathematics 141(2), 349-371, 1995.
  • [9] F. Lalonde, and D. McDuff, Local Non-squeezing Theorems and Stability, Geometric and Functional Analysis 5(2), 364-386, 1995.
  • [10] D. McDuff, Symplectic Topology Today, AMS Joint Mathematics Meeting, Baltimore, Colloquium Lectures, 2014. Available online: http://jointmathematicsmeetings. org/meetings/national/jmm2014/colloqnov2.pdf
  • [11] D. McDuff and D. Salamon, J-holomorphic Curves and Symplectic Topology, Colloquium Publications Vol. 52, AMS, Providence RI, 2004.
  • [12] D. McDuff and D. Salamon, Introduction to Symplectic Topology, Oxford University Press, 2017.
  • [13] Y. Ostrover and G.B. Vinicius, Symplectic embeddings of the `p-sum of two discs J. Topol. Anal. 14(4), 793-821, 2022.
  • [14] Á. Pelayo and S.V. Ngoc, Sharp symplectic embeddings of cylinders Indag. Math. (N.S.) 27(1), 307-317, 2016.
  • [15] L. Polterovich, The Geometry of the Group of Symplectic Diffeomorphisms, Birkhäuser Basel, 2001.
  • [16] F. Schlenk, Symplectic embedding problems, old and new, Bull. Amer. Math. Soc. (N.S.) 55(2), 139-182, 2018.
  • [17] J. Swoboda, and F. Ziltener, A symplectically non-squeezable small set and the regular coisotropic capacity, J. Symplectic Geom. 11(4), 509-523, 2013., 2010.
There are 17 citations in total.

Details

Primary Language English
Subjects Algebraic and Differential Geometry
Journal Section Research Article
Authors

Nil Ipek Sirikci 0000-0001-5161-5329

Submission Date March 11, 2024
Acceptance Date April 14, 2025
Early Pub Date June 24, 2025
Publication Date December 30, 2025
Published in Issue Year 2025 Volume: 54 Issue: 6

Cite

APA Sirikci, N. I. (2025). Symplectic embeddings into cylinders for certain symplectic manifolds. Hacettepe Journal of Mathematics and Statistics, 54(6), 2322-2325. https://doi.org/10.15672/hujms.1451185
AMA Sirikci NI. Symplectic embeddings into cylinders for certain symplectic manifolds. Hacettepe Journal of Mathematics and Statistics. December 2025;54(6):2322-2325. doi:10.15672/hujms.1451185
Chicago Sirikci, Nil Ipek. “Symplectic Embeddings into Cylinders for Certain Symplectic Manifolds”. Hacettepe Journal of Mathematics and Statistics 54, no. 6 (December 2025): 2322-25. https://doi.org/10.15672/hujms.1451185.
EndNote Sirikci NI (December 1, 2025) Symplectic embeddings into cylinders for certain symplectic manifolds. Hacettepe Journal of Mathematics and Statistics 54 6 2322–2325.
IEEE N. I. Sirikci, “Symplectic embeddings into cylinders for certain symplectic manifolds”, Hacettepe Journal of Mathematics and Statistics, vol. 54, no. 6, pp. 2322–2325, 2025, doi: 10.15672/hujms.1451185.
ISNAD Sirikci, Nil Ipek. “Symplectic Embeddings into Cylinders for Certain Symplectic Manifolds”. Hacettepe Journal of Mathematics and Statistics 54/6 (December2025), 2322-2325. https://doi.org/10.15672/hujms.1451185.
JAMA Sirikci NI. Symplectic embeddings into cylinders for certain symplectic manifolds. Hacettepe Journal of Mathematics and Statistics. 2025;54:2322–2325.
MLA Sirikci, Nil Ipek. “Symplectic Embeddings into Cylinders for Certain Symplectic Manifolds”. Hacettepe Journal of Mathematics and Statistics, vol. 54, no. 6, 2025, pp. 2322-5, doi:10.15672/hujms.1451185.
Vancouver Sirikci NI. Symplectic embeddings into cylinders for certain symplectic manifolds. Hacettepe Journal of Mathematics and Statistics. 2025;54(6):2322-5.