Year 2025,
Volume: 54 Issue: 6, 2206 - 2224, 30.12.2025
Tamim Aziz
,
Sanjoy Ghosal
Project Number
Human Resource Development Group, CSIR, India, through NET-JRF and the grant number is 09/0285(12636)/2021-EMR-I.
References
-
[1] A. Aizpuru, M.C. Listán-García and F. Rambla-Barreno, Density by moduli
and statistical convergence, Quaest. Math. 37 (4), 525–530, 2014.
-
[2] M. Arslan and E. Dündar, On rough convergence in 2-normed spaces and some
properties, Filomat 33 (16), 5077–5086, 2019.
-
[3] A. Aydın, Statistically order compact operators on Riesz spaces, Hacet. J. Math.
Stat. 53 (3), 1–9, 2024.
-
[4] S. Aytar, The rough limit set and the core of a real sequence, Numer. Funct.
Anal. Optim. 29 (3-4), 283-290, 2008.
-
[5] S. Aytar, Rough statistical convergence, Numer. Funct. Anal. Optim. 29 (3-4),
291–303, 2008.
-
[6] S. Aytar, Rough statistical cluster points, Filomat 31 (16), 5295-5304, 2017.
-
[7] T. Aziz and S. Ghosal, f-rough Cauchy sequences, Quaest. Math. 48 (1), 2025,
DOI: 10.2989/16073606.2025.2464951.
-
[8] M. Balcerzak, P. Das, M. Filipczak and J. Swaczyna, Generalized kinds of
density and the associated ideals, Acta Math. Hungar. 147 (1), 97–115, 2015.
-
[9] K. Bose, P. Das and A. Kwela, Generating new ideals using weighted density
via modulus functions, Indag. Math. 29 (5), 1196–1209, 2018.
-
[10] P. Das and A. Ghosh, Generating subgroups of the circle using a generalized
class of density functions, Indag. Math. 32 (3), 598–618, 2021.
-
[11] E. Dündar, On rough $\mathcal{I}_2$-convergence of double sequences, Numer. Funct. Anal.
Optim. 37 (4), 480-491, 2016.
-
[12] H. Fast, Sur la convergence statistique, Colloq. Math. 2 (3-4), 241–244, 1951.
-
[13] J. A. Fridy, On statistical convergence, Analysis 5 (4), 301–314, 1985.
-
[14] J. A. Fridy, Statistical limit points, Proc. Am. Math. Soc. 118 (4), 1187–1192,
1993.
-
[15] A. L. Garkavi, On the optimal net and best cross-section of a set in a normed
space, Izv. Akad. Nauk SSSR Ser. Mat. 26 (1), 87–106, 1962.
-
[16] S. Ghosal and M. Banerjee, Rough weighted statistical convergence on locally
solid Riesz spaces, Positivity 25 (5), 1789-1804, 2021.
-
[17] S. Ghosal and S. Mandal, The degree of roughness, Topol. Appl. 307, 107944,
2022.
-
[18] S. Ghosal and S. Mandal, Rough weighted $\mathcal{I}$-$\alpha\beta$-statistical convergence in locally
solid Riesz spaces, J. Math. Anal. Appl. 506 (2), 125681, 2022.
-
[19] H. I. Miller and L. Miller-Van Wieren, Statistical cluster point and statistical
limit point sets of subsequences of a given sequence, Hacet. J. Math. Stat. 49
(2), 494–497, 2020.
-
[20] L. Miller-Van Wieren, E. Taş and T. Yurdakadim, Some new insights into ideal
convergence and subsequences, Hacet. J. Math. Stat. 51 (5), 1379–1384, 2022.
-
[21] P. Kostyrko, T. Šalát and W. Wilczyński, $\mathcal{I}$-convergence, Real Anal. Exchange
26, 669–685, 2000.
-
[22] M. C. Listán-García, A characterization of uniform rotundity in every direction
in terms of rough convergence, Numer. Funct. Anal. Optim. 22 (11), 1166–
1174, 2011.
-
[23] M. C. Listán-García, f-statistical convergence, completeness and f-cluster
points, Bull. Belg. Math. Soc. Simon Stevin 23 (2), 235–245, 2016.
-
[24] M. C. Listán-García and F. Rambla-Barreno, Rough convergence and Chebyshev
centers in Banach spaces, Numer. Funct. Anal. Optim. 35 (4), 432-442,
2014.
-
[25] S. K. Pal, D. Chandra and S. Dutta, Rough ideal convergence, Hacet. J. Math.
Stat. 42 (6), 633–640, 2013.
-
[26] S. Pehlivan, A. Güncan and M. Mamedov, Statistical cluster points of sequences
in finite dimensional spaces, Czechosl. Math. J. 54 (1), 95–102, 2004.
-
[27] H. X. Phu, Rough convergence in normed linear spaces, Numer. Funct. Anal.
Optim. 22 (1-2), 199-222, 2001 .
-
[28] H. X. Phu, Rough convergence in infinite dimensional normed space, Numer.
Funct. Anal. Optim. 24 (3-4), 285-301, 2003.
-
[29] S. K. A. Rahaman and M. Mursaleen, On rough deferred statistical convergence
of difference sequences in L-fuzzy normed spaces, J. Math. Anal. Appl. 530 (2),
127684, 2024.
-
[30] M. H. M. Rashida, Rough statistical convergence and rough ideal convergence
in random 2-normed spaces, Filomat 38 (3), 979–996, 2024.
-
[31] T. Šalát, On statistically convergent sequences of real numbers, Math. Slovaca
30 (2), 139-150, 1980.
-
[32] H. Steinhaus, Sur la convergence ordinaire et la convergence asymptotique,
Colloq. Math. 2 (1), 73-74, 1951.
-
[33] B. C. Tripathy, On statistically convergent and statistically bounded sequences,
Bull. Malays. Math. Soc. (Second Series) 20 (1), 31-33, 1997.
The minimal $f^g$-statistical convergence and Cauchy degree of a sequence
Year 2025,
Volume: 54 Issue: 6, 2206 - 2224, 30.12.2025
Tamim Aziz
,
Sanjoy Ghosal
Abstract
In this paper, we introduce and characterize the rough $f^g$-statistical limit set, minimal $f^g$-statistical convergence degree, and minimal $f^g$-statistical Cauchy degree of a sequence in an arbitrary normed space. We clarify these concepts for normed spaces of any dimension and explore their properties and relationships. Our findings offer a new perspective that differs from some established results.
Project Number
Human Resource Development Group, CSIR, India, through NET-JRF and the grant number is 09/0285(12636)/2021-EMR-I.
References
-
[1] A. Aizpuru, M.C. Listán-García and F. Rambla-Barreno, Density by moduli
and statistical convergence, Quaest. Math. 37 (4), 525–530, 2014.
-
[2] M. Arslan and E. Dündar, On rough convergence in 2-normed spaces and some
properties, Filomat 33 (16), 5077–5086, 2019.
-
[3] A. Aydın, Statistically order compact operators on Riesz spaces, Hacet. J. Math.
Stat. 53 (3), 1–9, 2024.
-
[4] S. Aytar, The rough limit set and the core of a real sequence, Numer. Funct.
Anal. Optim. 29 (3-4), 283-290, 2008.
-
[5] S. Aytar, Rough statistical convergence, Numer. Funct. Anal. Optim. 29 (3-4),
291–303, 2008.
-
[6] S. Aytar, Rough statistical cluster points, Filomat 31 (16), 5295-5304, 2017.
-
[7] T. Aziz and S. Ghosal, f-rough Cauchy sequences, Quaest. Math. 48 (1), 2025,
DOI: 10.2989/16073606.2025.2464951.
-
[8] M. Balcerzak, P. Das, M. Filipczak and J. Swaczyna, Generalized kinds of
density and the associated ideals, Acta Math. Hungar. 147 (1), 97–115, 2015.
-
[9] K. Bose, P. Das and A. Kwela, Generating new ideals using weighted density
via modulus functions, Indag. Math. 29 (5), 1196–1209, 2018.
-
[10] P. Das and A. Ghosh, Generating subgroups of the circle using a generalized
class of density functions, Indag. Math. 32 (3), 598–618, 2021.
-
[11] E. Dündar, On rough $\mathcal{I}_2$-convergence of double sequences, Numer. Funct. Anal.
Optim. 37 (4), 480-491, 2016.
-
[12] H. Fast, Sur la convergence statistique, Colloq. Math. 2 (3-4), 241–244, 1951.
-
[13] J. A. Fridy, On statistical convergence, Analysis 5 (4), 301–314, 1985.
-
[14] J. A. Fridy, Statistical limit points, Proc. Am. Math. Soc. 118 (4), 1187–1192,
1993.
-
[15] A. L. Garkavi, On the optimal net and best cross-section of a set in a normed
space, Izv. Akad. Nauk SSSR Ser. Mat. 26 (1), 87–106, 1962.
-
[16] S. Ghosal and M. Banerjee, Rough weighted statistical convergence on locally
solid Riesz spaces, Positivity 25 (5), 1789-1804, 2021.
-
[17] S. Ghosal and S. Mandal, The degree of roughness, Topol. Appl. 307, 107944,
2022.
-
[18] S. Ghosal and S. Mandal, Rough weighted $\mathcal{I}$-$\alpha\beta$-statistical convergence in locally
solid Riesz spaces, J. Math. Anal. Appl. 506 (2), 125681, 2022.
-
[19] H. I. Miller and L. Miller-Van Wieren, Statistical cluster point and statistical
limit point sets of subsequences of a given sequence, Hacet. J. Math. Stat. 49
(2), 494–497, 2020.
-
[20] L. Miller-Van Wieren, E. Taş and T. Yurdakadim, Some new insights into ideal
convergence and subsequences, Hacet. J. Math. Stat. 51 (5), 1379–1384, 2022.
-
[21] P. Kostyrko, T. Šalát and W. Wilczyński, $\mathcal{I}$-convergence, Real Anal. Exchange
26, 669–685, 2000.
-
[22] M. C. Listán-García, A characterization of uniform rotundity in every direction
in terms of rough convergence, Numer. Funct. Anal. Optim. 22 (11), 1166–
1174, 2011.
-
[23] M. C. Listán-García, f-statistical convergence, completeness and f-cluster
points, Bull. Belg. Math. Soc. Simon Stevin 23 (2), 235–245, 2016.
-
[24] M. C. Listán-García and F. Rambla-Barreno, Rough convergence and Chebyshev
centers in Banach spaces, Numer. Funct. Anal. Optim. 35 (4), 432-442,
2014.
-
[25] S. K. Pal, D. Chandra and S. Dutta, Rough ideal convergence, Hacet. J. Math.
Stat. 42 (6), 633–640, 2013.
-
[26] S. Pehlivan, A. Güncan and M. Mamedov, Statistical cluster points of sequences
in finite dimensional spaces, Czechosl. Math. J. 54 (1), 95–102, 2004.
-
[27] H. X. Phu, Rough convergence in normed linear spaces, Numer. Funct. Anal.
Optim. 22 (1-2), 199-222, 2001 .
-
[28] H. X. Phu, Rough convergence in infinite dimensional normed space, Numer.
Funct. Anal. Optim. 24 (3-4), 285-301, 2003.
-
[29] S. K. A. Rahaman and M. Mursaleen, On rough deferred statistical convergence
of difference sequences in L-fuzzy normed spaces, J. Math. Anal. Appl. 530 (2),
127684, 2024.
-
[30] M. H. M. Rashida, Rough statistical convergence and rough ideal convergence
in random 2-normed spaces, Filomat 38 (3), 979–996, 2024.
-
[31] T. Šalát, On statistically convergent sequences of real numbers, Math. Slovaca
30 (2), 139-150, 1980.
-
[32] H. Steinhaus, Sur la convergence ordinaire et la convergence asymptotique,
Colloq. Math. 2 (1), 73-74, 1951.
-
[33] B. C. Tripathy, On statistically convergent and statistically bounded sequences,
Bull. Malays. Math. Soc. (Second Series) 20 (1), 31-33, 1997.