Year 2025,
Volume: 54 Issue: 6, 2225 - 2236, 30.12.2025
Jing-feng Tian
,
Xiao-yue Du
,
Zhong-xuan Mao
,
Jun-yi Li
References
-
[1] K. Aomoto and M. Kita, Theory of hypergeometric functions, Springer Monographs
Math, Tokyo, 2011.
-
[2] F.M. Atici, D.C. Biles and A. Lebedinsky, An application of time scales to economics,
Math. Comput. Model. 43, 718–726, 2006.
-
[3] F.M. Atici and F. Uysal, A production-inventory model of HMMS on time scales,
Appl. Math. Lett. 21, 236–243, 2008.
-
[4] S. Bernstein, Sur les fonctions absolument monotones(French), Acta Math. 52, 1–66,
1929.
-
[5] M. Bohner, Dynamic equations on time scales: An Introduction with Applications,
Birkhauser, 2001.
-
[6] M. Bohner and B. Karpuz, The gamma function on time scales, Dyn. Contin. Discrete
Impuls. Syst. Ser. A Math. Anal. 20(4), 507–522, 2013.
-
[7] M. Bohner and A. Peterson, Laplace transform and Z-transform: unification and
extension, Meth. Appl. Anal. 9(1), 151–158, 2002.
-
[8] R. Boucekkine and J. R. Ruiz-Tamarit, Special functions for the study of economic
dynamics: the case of the Lucas-Uzawa model, J. Math. Econom. 44(1), 33–54, 2008.
-
[9] Y.A. Brychkov and N.V. Savischenko, Application of hypergeometric functions of two
variables in wireless communication theory, Lobachevskii. J. Math. 40, 938–953, 2019.
-
[10] R. Chandramouli and N. Ranganathan, Computing the bivariate gaussian probability
integral, IEEE Signal Proc. 6(6), 129–131, 1999.
-
[11] B.-N. Guo and F. Qi, A completely monotonic function involving the tri-gamma function
and with degree one, Appl. Math. Comput. 218(19), 9890–9897, 2012.
-
[12] S. Hilger, Ein maßkettenkalkül mit anwendung auf zentrumsmannigfaltigkeiten, PhD
thesis, 1988.
-
[13] S. Hilger, Analysis on measure chains-A unified approach to continuous and discrete
calculus, Results. Math. 18, 18–56, 1990.
-
[14] S. Koumandos and H.L. Pedersen, Completely monotonic functions of positive order
and asymptotic expansions of the logarithm of Barnes double gamma function and
Euler’s gamma function, J. Math. Anal. Appl. 355(1), 33–40, 2009.
-
[15] V. Lakshmilkantham and S. Sivasundaramn, Stability of moving invariant sets and
uncertain dynamic systems on time scales, Comput. Math. Appl. 36(10-12), 339–346,
1998.
-
[16] Z.-X. Mao and J.-F. Tian, Delta complete monotonicity and completely monotonic
degree on time scales, Bull. Malays. Math. Sci. Soc. 46(4), 142, 2023.
-
[17] Z.-X. Mao and J.-F. Tian, Delta L’Hospital-, Laplace- and variable limit-type monotonicity
rules on time scales, Bull. Malays. Math. Sci. Soc. 47(1), 1, 2024.
-
[18] Z.-X. Mao, J.-F. Tian and Y.-R. Zhu, Psi, polygamma functions and Q-complete
monotonicity on time scales, J. Appl. Anal. Comput. 13(3), 1137–1154, 2023.
-
[19] B. Martin and G.S. Guseinov, The convolution on time scales, Abstr. Appl. Anal.
2007(3–4), 2007.
-
[20] N. Michel and M.V. Stoitsov, Fast computation of the Gauss hypergeometric function
with all its parameters complex with application to the Poschl-Teller-Ginocchio
potential wave functions, Comput. Physics. Commun. 178(7), 535–551, 2008.
-
[21] Q. Sheng, M. Fadag, J. Henderson and J.M. Davis, An exploration of combined dynamic
derivatives on time scales and their applications, Nonlinear Anal. Real World
Appl. 7(3), 395–413, 2006.
-
[22] X. Tian and Y. Zhang, Fractional time-scales Noether theorem with Caputo $\Delta$-
derivatives for Hamiltonian systems, Appl. Math. Comput. 393, 125753, 2021.
-
[23] S.Y. Trimble, J. Wells and F.T. Wright, Superadditive functions and a statistical
application, SIAM J. Math. Anal. 20(5), 1255–1259, 1989.
-
[24] D.V. Widder, The Laplace transform, Princeton Mathematical Series, vol. 6. Princeton
University Press, Princeton, 1941.
-
[25] J.-F. Xu, B. Pervaiz, A. Zada, et al., Stability analysis of causal integral evolution
impulsive systems on time scales, Acta. Math. Sci. 41, 781–800, 2021.
-
[26] L. Zhu, A class of strongly completely monotonic functions related to gamma function,
J. Comput. Appl. Math. 367, 112–469, 2020.
Strongly completely monotonic functions on time scales
Year 2025,
Volume: 54 Issue: 6, 2225 - 2236, 30.12.2025
Jing-feng Tian
,
Xiao-yue Du
,
Zhong-xuan Mao
,
Jun-yi Li
Abstract
In this paper, we introduce the concept of strongly completely monotonic functions on time scales and investigate several properties of such functions. Meanwhile, we present some key results considering three special cases including continuous, discrete, and quantum. As applications, we prove that certain functions involving the confluent and Gaussian hypergeometric functions are strongly completely monotonic.
References
-
[1] K. Aomoto and M. Kita, Theory of hypergeometric functions, Springer Monographs
Math, Tokyo, 2011.
-
[2] F.M. Atici, D.C. Biles and A. Lebedinsky, An application of time scales to economics,
Math. Comput. Model. 43, 718–726, 2006.
-
[3] F.M. Atici and F. Uysal, A production-inventory model of HMMS on time scales,
Appl. Math. Lett. 21, 236–243, 2008.
-
[4] S. Bernstein, Sur les fonctions absolument monotones(French), Acta Math. 52, 1–66,
1929.
-
[5] M. Bohner, Dynamic equations on time scales: An Introduction with Applications,
Birkhauser, 2001.
-
[6] M. Bohner and B. Karpuz, The gamma function on time scales, Dyn. Contin. Discrete
Impuls. Syst. Ser. A Math. Anal. 20(4), 507–522, 2013.
-
[7] M. Bohner and A. Peterson, Laplace transform and Z-transform: unification and
extension, Meth. Appl. Anal. 9(1), 151–158, 2002.
-
[8] R. Boucekkine and J. R. Ruiz-Tamarit, Special functions for the study of economic
dynamics: the case of the Lucas-Uzawa model, J. Math. Econom. 44(1), 33–54, 2008.
-
[9] Y.A. Brychkov and N.V. Savischenko, Application of hypergeometric functions of two
variables in wireless communication theory, Lobachevskii. J. Math. 40, 938–953, 2019.
-
[10] R. Chandramouli and N. Ranganathan, Computing the bivariate gaussian probability
integral, IEEE Signal Proc. 6(6), 129–131, 1999.
-
[11] B.-N. Guo and F. Qi, A completely monotonic function involving the tri-gamma function
and with degree one, Appl. Math. Comput. 218(19), 9890–9897, 2012.
-
[12] S. Hilger, Ein maßkettenkalkül mit anwendung auf zentrumsmannigfaltigkeiten, PhD
thesis, 1988.
-
[13] S. Hilger, Analysis on measure chains-A unified approach to continuous and discrete
calculus, Results. Math. 18, 18–56, 1990.
-
[14] S. Koumandos and H.L. Pedersen, Completely monotonic functions of positive order
and asymptotic expansions of the logarithm of Barnes double gamma function and
Euler’s gamma function, J. Math. Anal. Appl. 355(1), 33–40, 2009.
-
[15] V. Lakshmilkantham and S. Sivasundaramn, Stability of moving invariant sets and
uncertain dynamic systems on time scales, Comput. Math. Appl. 36(10-12), 339–346,
1998.
-
[16] Z.-X. Mao and J.-F. Tian, Delta complete monotonicity and completely monotonic
degree on time scales, Bull. Malays. Math. Sci. Soc. 46(4), 142, 2023.
-
[17] Z.-X. Mao and J.-F. Tian, Delta L’Hospital-, Laplace- and variable limit-type monotonicity
rules on time scales, Bull. Malays. Math. Sci. Soc. 47(1), 1, 2024.
-
[18] Z.-X. Mao, J.-F. Tian and Y.-R. Zhu, Psi, polygamma functions and Q-complete
monotonicity on time scales, J. Appl. Anal. Comput. 13(3), 1137–1154, 2023.
-
[19] B. Martin and G.S. Guseinov, The convolution on time scales, Abstr. Appl. Anal.
2007(3–4), 2007.
-
[20] N. Michel and M.V. Stoitsov, Fast computation of the Gauss hypergeometric function
with all its parameters complex with application to the Poschl-Teller-Ginocchio
potential wave functions, Comput. Physics. Commun. 178(7), 535–551, 2008.
-
[21] Q. Sheng, M. Fadag, J. Henderson and J.M. Davis, An exploration of combined dynamic
derivatives on time scales and their applications, Nonlinear Anal. Real World
Appl. 7(3), 395–413, 2006.
-
[22] X. Tian and Y. Zhang, Fractional time-scales Noether theorem with Caputo $\Delta$-
derivatives for Hamiltonian systems, Appl. Math. Comput. 393, 125753, 2021.
-
[23] S.Y. Trimble, J. Wells and F.T. Wright, Superadditive functions and a statistical
application, SIAM J. Math. Anal. 20(5), 1255–1259, 1989.
-
[24] D.V. Widder, The Laplace transform, Princeton Mathematical Series, vol. 6. Princeton
University Press, Princeton, 1941.
-
[25] J.-F. Xu, B. Pervaiz, A. Zada, et al., Stability analysis of causal integral evolution
impulsive systems on time scales, Acta. Math. Sci. 41, 781–800, 2021.
-
[26] L. Zhu, A class of strongly completely monotonic functions related to gamma function,
J. Comput. Appl. Math. 367, 112–469, 2020.