Research Article
BibTex RIS Cite

Year 2025, Volume: 54 Issue: 6, 2225 - 2236, 30.12.2025
https://doi.org/10.15672/hujms.1597774

Abstract

References

  • [1] K. Aomoto and M. Kita, Theory of hypergeometric functions, Springer Monographs Math, Tokyo, 2011.
  • [2] F.M. Atici, D.C. Biles and A. Lebedinsky, An application of time scales to economics, Math. Comput. Model. 43, 718–726, 2006.
  • [3] F.M. Atici and F. Uysal, A production-inventory model of HMMS on time scales, Appl. Math. Lett. 21, 236–243, 2008.
  • [4] S. Bernstein, Sur les fonctions absolument monotones(French), Acta Math. 52, 1–66, 1929.
  • [5] M. Bohner, Dynamic equations on time scales: An Introduction with Applications, Birkhauser, 2001.
  • [6] M. Bohner and B. Karpuz, The gamma function on time scales, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 20(4), 507–522, 2013.
  • [7] M. Bohner and A. Peterson, Laplace transform and Z-transform: unification and extension, Meth. Appl. Anal. 9(1), 151–158, 2002.
  • [8] R. Boucekkine and J. R. Ruiz-Tamarit, Special functions for the study of economic dynamics: the case of the Lucas-Uzawa model, J. Math. Econom. 44(1), 33–54, 2008.
  • [9] Y.A. Brychkov and N.V. Savischenko, Application of hypergeometric functions of two variables in wireless communication theory, Lobachevskii. J. Math. 40, 938–953, 2019.
  • [10] R. Chandramouli and N. Ranganathan, Computing the bivariate gaussian probability integral, IEEE Signal Proc. 6(6), 129–131, 1999.
  • [11] B.-N. Guo and F. Qi, A completely monotonic function involving the tri-gamma function and with degree one, Appl. Math. Comput. 218(19), 9890–9897, 2012.
  • [12] S. Hilger, Ein maßkettenkalkül mit anwendung auf zentrumsmannigfaltigkeiten, PhD thesis, 1988.
  • [13] S. Hilger, Analysis on measure chains-A unified approach to continuous and discrete calculus, Results. Math. 18, 18–56, 1990.
  • [14] S. Koumandos and H.L. Pedersen, Completely monotonic functions of positive order and asymptotic expansions of the logarithm of Barnes double gamma function and Euler’s gamma function, J. Math. Anal. Appl. 355(1), 33–40, 2009.
  • [15] V. Lakshmilkantham and S. Sivasundaramn, Stability of moving invariant sets and uncertain dynamic systems on time scales, Comput. Math. Appl. 36(10-12), 339–346, 1998.
  • [16] Z.-X. Mao and J.-F. Tian, Delta complete monotonicity and completely monotonic degree on time scales, Bull. Malays. Math. Sci. Soc. 46(4), 142, 2023.
  • [17] Z.-X. Mao and J.-F. Tian, Delta L’Hospital-, Laplace- and variable limit-type monotonicity rules on time scales, Bull. Malays. Math. Sci. Soc. 47(1), 1, 2024.
  • [18] Z.-X. Mao, J.-F. Tian and Y.-R. Zhu, Psi, polygamma functions and Q-complete monotonicity on time scales, J. Appl. Anal. Comput. 13(3), 1137–1154, 2023.
  • [19] B. Martin and G.S. Guseinov, The convolution on time scales, Abstr. Appl. Anal. 2007(3–4), 2007.
  • [20] N. Michel and M.V. Stoitsov, Fast computation of the Gauss hypergeometric function with all its parameters complex with application to the Poschl-Teller-Ginocchio potential wave functions, Comput. Physics. Commun. 178(7), 535–551, 2008.
  • [21] Q. Sheng, M. Fadag, J. Henderson and J.M. Davis, An exploration of combined dynamic derivatives on time scales and their applications, Nonlinear Anal. Real World Appl. 7(3), 395–413, 2006.
  • [22] X. Tian and Y. Zhang, Fractional time-scales Noether theorem with Caputo $\Delta$- derivatives for Hamiltonian systems, Appl. Math. Comput. 393, 125753, 2021.
  • [23] S.Y. Trimble, J. Wells and F.T. Wright, Superadditive functions and a statistical application, SIAM J. Math. Anal. 20(5), 1255–1259, 1989.
  • [24] D.V. Widder, The Laplace transform, Princeton Mathematical Series, vol. 6. Princeton University Press, Princeton, 1941.
  • [25] J.-F. Xu, B. Pervaiz, A. Zada, et al., Stability analysis of causal integral evolution impulsive systems on time scales, Acta. Math. Sci. 41, 781–800, 2021.
  • [26] L. Zhu, A class of strongly completely monotonic functions related to gamma function, J. Comput. Appl. Math. 367, 112–469, 2020.

Strongly completely monotonic functions on time scales

Year 2025, Volume: 54 Issue: 6, 2225 - 2236, 30.12.2025
https://doi.org/10.15672/hujms.1597774

Abstract

In this paper, we introduce the concept of strongly completely monotonic functions on time scales and investigate several properties of such functions. Meanwhile, we present some key results considering three special cases including continuous, discrete, and quantum. As applications, we prove that certain functions involving the confluent and Gaussian hypergeometric functions are strongly completely monotonic.

References

  • [1] K. Aomoto and M. Kita, Theory of hypergeometric functions, Springer Monographs Math, Tokyo, 2011.
  • [2] F.M. Atici, D.C. Biles and A. Lebedinsky, An application of time scales to economics, Math. Comput. Model. 43, 718–726, 2006.
  • [3] F.M. Atici and F. Uysal, A production-inventory model of HMMS on time scales, Appl. Math. Lett. 21, 236–243, 2008.
  • [4] S. Bernstein, Sur les fonctions absolument monotones(French), Acta Math. 52, 1–66, 1929.
  • [5] M. Bohner, Dynamic equations on time scales: An Introduction with Applications, Birkhauser, 2001.
  • [6] M. Bohner and B. Karpuz, The gamma function on time scales, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 20(4), 507–522, 2013.
  • [7] M. Bohner and A. Peterson, Laplace transform and Z-transform: unification and extension, Meth. Appl. Anal. 9(1), 151–158, 2002.
  • [8] R. Boucekkine and J. R. Ruiz-Tamarit, Special functions for the study of economic dynamics: the case of the Lucas-Uzawa model, J. Math. Econom. 44(1), 33–54, 2008.
  • [9] Y.A. Brychkov and N.V. Savischenko, Application of hypergeometric functions of two variables in wireless communication theory, Lobachevskii. J. Math. 40, 938–953, 2019.
  • [10] R. Chandramouli and N. Ranganathan, Computing the bivariate gaussian probability integral, IEEE Signal Proc. 6(6), 129–131, 1999.
  • [11] B.-N. Guo and F. Qi, A completely monotonic function involving the tri-gamma function and with degree one, Appl. Math. Comput. 218(19), 9890–9897, 2012.
  • [12] S. Hilger, Ein maßkettenkalkül mit anwendung auf zentrumsmannigfaltigkeiten, PhD thesis, 1988.
  • [13] S. Hilger, Analysis on measure chains-A unified approach to continuous and discrete calculus, Results. Math. 18, 18–56, 1990.
  • [14] S. Koumandos and H.L. Pedersen, Completely monotonic functions of positive order and asymptotic expansions of the logarithm of Barnes double gamma function and Euler’s gamma function, J. Math. Anal. Appl. 355(1), 33–40, 2009.
  • [15] V. Lakshmilkantham and S. Sivasundaramn, Stability of moving invariant sets and uncertain dynamic systems on time scales, Comput. Math. Appl. 36(10-12), 339–346, 1998.
  • [16] Z.-X. Mao and J.-F. Tian, Delta complete monotonicity and completely monotonic degree on time scales, Bull. Malays. Math. Sci. Soc. 46(4), 142, 2023.
  • [17] Z.-X. Mao and J.-F. Tian, Delta L’Hospital-, Laplace- and variable limit-type monotonicity rules on time scales, Bull. Malays. Math. Sci. Soc. 47(1), 1, 2024.
  • [18] Z.-X. Mao, J.-F. Tian and Y.-R. Zhu, Psi, polygamma functions and Q-complete monotonicity on time scales, J. Appl. Anal. Comput. 13(3), 1137–1154, 2023.
  • [19] B. Martin and G.S. Guseinov, The convolution on time scales, Abstr. Appl. Anal. 2007(3–4), 2007.
  • [20] N. Michel and M.V. Stoitsov, Fast computation of the Gauss hypergeometric function with all its parameters complex with application to the Poschl-Teller-Ginocchio potential wave functions, Comput. Physics. Commun. 178(7), 535–551, 2008.
  • [21] Q. Sheng, M. Fadag, J. Henderson and J.M. Davis, An exploration of combined dynamic derivatives on time scales and their applications, Nonlinear Anal. Real World Appl. 7(3), 395–413, 2006.
  • [22] X. Tian and Y. Zhang, Fractional time-scales Noether theorem with Caputo $\Delta$- derivatives for Hamiltonian systems, Appl. Math. Comput. 393, 125753, 2021.
  • [23] S.Y. Trimble, J. Wells and F.T. Wright, Superadditive functions and a statistical application, SIAM J. Math. Anal. 20(5), 1255–1259, 1989.
  • [24] D.V. Widder, The Laplace transform, Princeton Mathematical Series, vol. 6. Princeton University Press, Princeton, 1941.
  • [25] J.-F. Xu, B. Pervaiz, A. Zada, et al., Stability analysis of causal integral evolution impulsive systems on time scales, Acta. Math. Sci. 41, 781–800, 2021.
  • [26] L. Zhu, A class of strongly completely monotonic functions related to gamma function, J. Comput. Appl. Math. 367, 112–469, 2020.
There are 26 citations in total.

Details

Primary Language English
Subjects Real and Complex Functions (Incl. Several Variables)
Journal Section Research Article
Authors

Jing-feng Tian 0000-0002-0631-038X

Xiao-yue Du 0009-0003-7792-6231

Zhong-xuan Mao 0000-0001-5089-301X

Jun-yi Li 0009-0006-6010-2174

Submission Date December 8, 2024
Acceptance Date February 28, 2025
Early Pub Date April 11, 2025
Publication Date December 30, 2025
Published in Issue Year 2025 Volume: 54 Issue: 6

Cite

APA Tian, J.- feng, Du, X.- yue, Mao, Z.- xuan, Li, J.- yi. (2025). Strongly completely monotonic functions on time scales. Hacettepe Journal of Mathematics and Statistics, 54(6), 2225-2236. https://doi.org/10.15672/hujms.1597774
AMA Tian J feng, Du X yue, Mao Z xuan, Li J yi. Strongly completely monotonic functions on time scales. Hacettepe Journal of Mathematics and Statistics. December 2025;54(6):2225-2236. doi:10.15672/hujms.1597774
Chicago Tian, Jing-feng, Xiao-yue Du, Zhong-xuan Mao, and Jun-yi Li. “Strongly Completely Monotonic Functions on Time Scales”. Hacettepe Journal of Mathematics and Statistics 54, no. 6 (December 2025): 2225-36. https://doi.org/10.15672/hujms.1597774.
EndNote Tian J- feng, Du X- yue, Mao Z- xuan, Li J- yi (December 1, 2025) Strongly completely monotonic functions on time scales. Hacettepe Journal of Mathematics and Statistics 54 6 2225–2236.
IEEE J.- feng Tian, X.- yue Du, Z.- xuan Mao, and J.- yi Li, “Strongly completely monotonic functions on time scales”, Hacettepe Journal of Mathematics and Statistics, vol. 54, no. 6, pp. 2225–2236, 2025, doi: 10.15672/hujms.1597774.
ISNAD Tian, Jing-feng et al. “Strongly Completely Monotonic Functions on Time Scales”. Hacettepe Journal of Mathematics and Statistics 54/6 (December2025), 2225-2236. https://doi.org/10.15672/hujms.1597774.
JAMA Tian J- feng, Du X- yue, Mao Z- xuan, Li J- yi. Strongly completely monotonic functions on time scales. Hacettepe Journal of Mathematics and Statistics. 2025;54:2225–2236.
MLA Tian, Jing-feng et al. “Strongly Completely Monotonic Functions on Time Scales”. Hacettepe Journal of Mathematics and Statistics, vol. 54, no. 6, 2025, pp. 2225-36, doi:10.15672/hujms.1597774.
Vancouver Tian J- feng, Du X- yue, Mao Z- xuan, Li J- yi. Strongly completely monotonic functions on time scales. Hacettepe Journal of Mathematics and Statistics. 2025;54(6):2225-36.