Research Article
BibTex RIS Cite

Year 2026, Issue: Advanced Online Publication, 47 - 52
https://doi.org/10.15672/hujms.1674729
https://izlik.org/JA45AF92XN

Abstract

Project Number

24ZR1422800,12471018,12171302

References

  • [1] E. Detomi and A. Lucchini, Recognizing soluble groups from their probabilistic zeta functions, Bull. London Math. Soc. 35 (5), 659–664, 2003.
  • [2] E. Detomi and A. Lucchini,Some generalizations of the probabilistic zeta function, Ischia Group Theory 2006, 56–72, 2007.
  • [3] H. Gu, H. Meng, and X. Guo, Coset complexes of p-subgroups in finite groups, Reprint, arXiv:2503.06379, 2025.
  • [4] P. Hall. The Eulerian functions of a finite group, Q. J. Math. 7 (1), 134–151, 1936.
  • [5] C. Y. Ho, Finite groups in which two different Sylow p-subgroups have trivial intersection for an odd prime p, J. Math. Soc. Japan, 31 (4), 669–675, 1979.
  • [6] D. Quillen, Homotopy properties of the poset of nontrivial p-subgroups of a group, Advances in Math. 28 (2), 101–128, 1978.
  • [7] E. Snapper, Counting p-subgroups Proc. Amer. Math. Soc. 39 (1), 81–82, 1973.
  • [8] M. Suzuki, Finite groups of even order in which Sylow 2-groups are independent, Ann. of Math. 80 (1), 58–77, 1964.
  • [9] M.Wachs, Poset topology: tools and applications, Reprint, arXiv: math/0602226, 2006.

A note on coset complexes of $p$-subgroups

Year 2026, Issue: Advanced Online Publication, 47 - 52
https://doi.org/10.15672/hujms.1674729
https://izlik.org/JA45AF92XN

Abstract

This paper investigates the coset complexes of $p$-subgroups in finite groups. Given a finite group $G$ and a prime $p$, we define \( \mathscr{C}_p(G) \) as the poset of all cosets of $p$-subgroups of $G$. We construct a probability function \( P_p(G,s) \) with group-theoretic connections, strengthen the congruence formula of the $p$-local Euler characteristic of \( \mathscr{C}_p(G) \), and analyze the connectivity of \( \mathscr{C}_p(G) \).

Supporting Institution

the Natural Science Foundation of Shanghai,the National Natural Science Foundation of China

Project Number

24ZR1422800,12471018,12171302

Thanks

The second author is supported by the Natural Science Foundation of Shanghai (24ZR1422800) and the National Natural Science Foundation of China (12471018); The third author is supported by the National Natural Science Foundation of China (12171302).

References

  • [1] E. Detomi and A. Lucchini, Recognizing soluble groups from their probabilistic zeta functions, Bull. London Math. Soc. 35 (5), 659–664, 2003.
  • [2] E. Detomi and A. Lucchini,Some generalizations of the probabilistic zeta function, Ischia Group Theory 2006, 56–72, 2007.
  • [3] H. Gu, H. Meng, and X. Guo, Coset complexes of p-subgroups in finite groups, Reprint, arXiv:2503.06379, 2025.
  • [4] P. Hall. The Eulerian functions of a finite group, Q. J. Math. 7 (1), 134–151, 1936.
  • [5] C. Y. Ho, Finite groups in which two different Sylow p-subgroups have trivial intersection for an odd prime p, J. Math. Soc. Japan, 31 (4), 669–675, 1979.
  • [6] D. Quillen, Homotopy properties of the poset of nontrivial p-subgroups of a group, Advances in Math. 28 (2), 101–128, 1978.
  • [7] E. Snapper, Counting p-subgroups Proc. Amer. Math. Soc. 39 (1), 81–82, 1973.
  • [8] M. Suzuki, Finite groups of even order in which Sylow 2-groups are independent, Ann. of Math. 80 (1), 58–77, 1964.
  • [9] M.Wachs, Poset topology: tools and applications, Reprint, arXiv: math/0602226, 2006.
There are 9 citations in total.

Details

Primary Language English
Subjects Group Theory and Generalisations, Topology
Journal Section Research Article
Authors

Huilong Gu 0009-0008-8833-828X

Hangyang Meng 0000-0001-9840-5783

Xiuyun Guo 0000-0003-2288-2983

Project Number 24ZR1422800,12471018,12171302
Submission Date April 12, 2025
Acceptance Date May 27, 2025
Early Pub Date June 24, 2025
DOI https://doi.org/10.15672/hujms.1674729
IZ https://izlik.org/JA45AF92XN
Published in Issue Year 2026 Issue: Advanced Online Publication

Cite

APA Gu, H., Meng, H., & Guo, X. (2025). A note on coset complexes of $p$-subgroups. Hacettepe Journal of Mathematics and Statistics, Advanced Online Publication, 47-52. https://doi.org/10.15672/hujms.1674729
AMA 1.Gu H, Meng H, Guo X. A note on coset complexes of $p$-subgroups. Hacettepe Journal of Mathematics and Statistics. 2025;(Advanced Online Publication):47-52. doi:10.15672/hujms.1674729
Chicago Gu, Huilong, Hangyang Meng, and Xiuyun Guo. 2025. “A Note on Coset Complexes of $p$-Subgroups”. Hacettepe Journal of Mathematics and Statistics, no. Advanced Online Publication: 47-52. https://doi.org/10.15672/hujms.1674729.
EndNote Gu H, Meng H, Guo X (June 1, 2025) A note on coset complexes of $p$-subgroups. Hacettepe Journal of Mathematics and Statistics Advanced Online Publication 47–52.
IEEE [1]H. Gu, H. Meng, and X. Guo, “A note on coset complexes of $p$-subgroups”, Hacettepe Journal of Mathematics and Statistics, no. Advanced Online Publication, pp. 47–52, June 2025, doi: 10.15672/hujms.1674729.
ISNAD Gu, Huilong - Meng, Hangyang - Guo, Xiuyun. “A Note on Coset Complexes of $p$-Subgroups”. Hacettepe Journal of Mathematics and Statistics. Advanced Online Publication (June 1, 2025): 47-52. https://doi.org/10.15672/hujms.1674729.
JAMA 1.Gu H, Meng H, Guo X. A note on coset complexes of $p$-subgroups. Hacettepe Journal of Mathematics and Statistics. 2025;:47–52.
MLA Gu, Huilong, et al. “A Note on Coset Complexes of $p$-Subgroups”. Hacettepe Journal of Mathematics and Statistics, no. Advanced Online Publication, June 2025, pp. 47-52, doi:10.15672/hujms.1674729.
Vancouver 1.Gu H, Meng H, Guo X. A note on coset complexes of $p$-subgroups. Hacettepe Journal of Mathematics and Statistics [Internet]. 2025 June 1;(Advanced Online Publication):47-52. Available from: https://izlik.org/JA45AF92XN