Research Article
BibTex RIS Cite

Year 2020, Volume: 49 Issue: 2, 843 - 853, 02.04.2020
https://doi.org/10.15672/hujms.479184
https://izlik.org/JA22LL32AG

Abstract

References

  • [1] C. S. Bagewadi, and G. Ingalahalli, Ricci Solitons in Lorentzian α−Sasakian Manifolds, Acta Math. Acad. Paedagog. Nyházi. (N.S), 28 (1), 59-68, 2012.
  • [2] C. L. Bejan and M. Crasmareanu, Second Order Parallel Tensors and Ricci Solitons in 3-Dimensional Normal Paracontact Geometry, Ann. Glob. Anal. Geom., 46 , 117- 127, 2014.
  • [3] D. E. Blair, Contact Manifolds in Riemannian Geometry, Lecture Notes in Mathematics, 509, Springer-Verlag, Berlin, 1976.
  • [4] B.-Y. Chen, Geometry of Submanifolds, Marcel Dekker, New York, 1973.
  • [5] B.-Y. Chen, Some Results on Concircular Vector Fields and Their Applications to Ricci Solitons, Bull. Korean Math. Soc., 52 (5), 1535-1547, 2015.
  • [6] B.-Y. Chen, Rectifying Submanifolds of Riemannian Manifolds and Torqued Vector Fields, Kragujevac J. Math., 41 (1), 93-103, 2017.
  • [7] B.-Y. Chen, Classification of Torqued Vector Fields and Its Applications to Ricci Solitons, Kragujevac J. Math., 41 (2), 239-250, 2017.
  • [8] J. T. Cho and J. Park, Gradient Ricci Solitons with Semi-Symmetry, Bull. Korean Math. Soc., 51 (1), 213-219, 2014.
  • [9] A. Ghosh, Certain Contact Metrics as Ricci Almost Solitons, Results Maths., 65, 81-94, 2014.
  • [10] A. Ghosh, Kenmotsu 3-Metric as a Ricci Soliton, Chaos, Solitons & Fractals, 44 (8), 647-650, 2011.
  • [11] R. S. Hamilton, Three-Manifolds with Positive Ricci Curvature, J. Diff. Geom., 17 (2), 255-306, 1982.
  • [12] R. S. Hamilton, The Ricci Flow on Surfaces, Mathematics and General Relativity (Santa Cruz, CA, 1986), Contemp. Math., A.M.S, 71, 237-262, 1988.
  • [13] S. K. Hui, S. K. Yadav and A. Patra, Almost Conformal Ricci Solitons on f−Kenmotsu Manifolds, Khayyam J. Math., 5 (1), 89-104, 2019.
  • [14] J.-B. Jun, U. C. De and G. Pathak, On Kenmotsu Manifolds, J. Korean Math. Soc., 42 (3), 435-445, 2005.
  • [15] K. Kenmotsu, A Class of Almost Contact Riemannian Manifolds, Tohoku Math. J., 24, 93-103, 1972.
  • [16] H. G. Nagaraja and C. R. Premalatha, Ricci Solitons in Kenmotsu Manifolds, J. Math. Anal., 3 (2), 18-24, 2012.
  • [17] S. Y. Perktaş and S. Keleş, Ricci Solitons in 3-Dimensional Normal Almost Paracontact Metric Manifolds, Int. Electron. J. Geom., 8 (2), 34-45, 2015.
  • [18] R. Sharma, Certain Results on K-Contact and (k, μ)−Contact Manifolds, J. Geom., 89, (1-2), 138-147, 2008.
  • [19] R. Sharma and A. Ghosh, Sasakian 3-Manifolds as a Ricci Soliton Represents the Heisenberg Group, Int. J. Geom. Methods Mod. Phys, 8 (1), 149-154., 2011.
  • [20] S. Sular and C. Özgür, On Some Submanifolds of Kenmotsu Manifolds, Chaos, Solitons & Fractals, 4 (2), 1990-1995, 2009.
  • [21] M. M. Tripathi, Ricci Solitons in Contact Metric Manifolds, arXiv:0801.4222v1, [math DG], 2008.
  • [22] K. Yano and M. Kon, Structures on Manifolds, Series in Mathematics, World Scientific Publishing, Springer, 1984.
  • [23] H. İ. Yoldaş, Ş. E. Meriç, E. Yaşar, On Generic Submanifold of Sasakian Manifold with Concurrent Vector Field, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 68 (2), 1983-1994, 2019.

On submanifolds of Kenmotsu manifold with Torqued vector field

Year 2020, Volume: 49 Issue: 2, 843 - 853, 02.04.2020
https://doi.org/10.15672/hujms.479184
https://izlik.org/JA22LL32AG

Abstract

In this paper, we consider the submanifold $M$ of a Kenmotsu manifold $\tilde M$ endowed with torqued vector field $\mathcal{T}$. Also, we study the submanifold $M$ admitting a Ricci soliton of both Kenmotsu manifold $\tilde M$ and Kenmotsu space form $\tilde M(c)$. Indeed, we provide some necessary conditions for which such a submanifold $M$ is an $\eta-$Einstein. We have presented some related results and classified. Finally, we obtain an important characterization which classifies the submanifold $M$ admitting a Ricci soliton of Kenmotsu space form $\tilde M(c)$.

References

  • [1] C. S. Bagewadi, and G. Ingalahalli, Ricci Solitons in Lorentzian α−Sasakian Manifolds, Acta Math. Acad. Paedagog. Nyházi. (N.S), 28 (1), 59-68, 2012.
  • [2] C. L. Bejan and M. Crasmareanu, Second Order Parallel Tensors and Ricci Solitons in 3-Dimensional Normal Paracontact Geometry, Ann. Glob. Anal. Geom., 46 , 117- 127, 2014.
  • [3] D. E. Blair, Contact Manifolds in Riemannian Geometry, Lecture Notes in Mathematics, 509, Springer-Verlag, Berlin, 1976.
  • [4] B.-Y. Chen, Geometry of Submanifolds, Marcel Dekker, New York, 1973.
  • [5] B.-Y. Chen, Some Results on Concircular Vector Fields and Their Applications to Ricci Solitons, Bull. Korean Math. Soc., 52 (5), 1535-1547, 2015.
  • [6] B.-Y. Chen, Rectifying Submanifolds of Riemannian Manifolds and Torqued Vector Fields, Kragujevac J. Math., 41 (1), 93-103, 2017.
  • [7] B.-Y. Chen, Classification of Torqued Vector Fields and Its Applications to Ricci Solitons, Kragujevac J. Math., 41 (2), 239-250, 2017.
  • [8] J. T. Cho and J. Park, Gradient Ricci Solitons with Semi-Symmetry, Bull. Korean Math. Soc., 51 (1), 213-219, 2014.
  • [9] A. Ghosh, Certain Contact Metrics as Ricci Almost Solitons, Results Maths., 65, 81-94, 2014.
  • [10] A. Ghosh, Kenmotsu 3-Metric as a Ricci Soliton, Chaos, Solitons & Fractals, 44 (8), 647-650, 2011.
  • [11] R. S. Hamilton, Three-Manifolds with Positive Ricci Curvature, J. Diff. Geom., 17 (2), 255-306, 1982.
  • [12] R. S. Hamilton, The Ricci Flow on Surfaces, Mathematics and General Relativity (Santa Cruz, CA, 1986), Contemp. Math., A.M.S, 71, 237-262, 1988.
  • [13] S. K. Hui, S. K. Yadav and A. Patra, Almost Conformal Ricci Solitons on f−Kenmotsu Manifolds, Khayyam J. Math., 5 (1), 89-104, 2019.
  • [14] J.-B. Jun, U. C. De and G. Pathak, On Kenmotsu Manifolds, J. Korean Math. Soc., 42 (3), 435-445, 2005.
  • [15] K. Kenmotsu, A Class of Almost Contact Riemannian Manifolds, Tohoku Math. J., 24, 93-103, 1972.
  • [16] H. G. Nagaraja and C. R. Premalatha, Ricci Solitons in Kenmotsu Manifolds, J. Math. Anal., 3 (2), 18-24, 2012.
  • [17] S. Y. Perktaş and S. Keleş, Ricci Solitons in 3-Dimensional Normal Almost Paracontact Metric Manifolds, Int. Electron. J. Geom., 8 (2), 34-45, 2015.
  • [18] R. Sharma, Certain Results on K-Contact and (k, μ)−Contact Manifolds, J. Geom., 89, (1-2), 138-147, 2008.
  • [19] R. Sharma and A. Ghosh, Sasakian 3-Manifolds as a Ricci Soliton Represents the Heisenberg Group, Int. J. Geom. Methods Mod. Phys, 8 (1), 149-154., 2011.
  • [20] S. Sular and C. Özgür, On Some Submanifolds of Kenmotsu Manifolds, Chaos, Solitons & Fractals, 4 (2), 1990-1995, 2009.
  • [21] M. M. Tripathi, Ricci Solitons in Contact Metric Manifolds, arXiv:0801.4222v1, [math DG], 2008.
  • [22] K. Yano and M. Kon, Structures on Manifolds, Series in Mathematics, World Scientific Publishing, Springer, 1984.
  • [23] H. İ. Yoldaş, Ş. E. Meriç, E. Yaşar, On Generic Submanifold of Sasakian Manifold with Concurrent Vector Field, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 68 (2), 1983-1994, 2019.
There are 23 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Article
Authors

Halil İbrahim Yoldaş 0000-0002-3238-6484

Şemsi Eken Meriç This is me 0000-0003-2783-1149

Erol Yaşar 0000-0001-8716-0901

Publication Date April 2, 2020
DOI https://doi.org/10.15672/hujms.479184
IZ https://izlik.org/JA22LL32AG
Published in Issue Year 2020 Volume: 49 Issue: 2

Cite

APA Yoldaş, H. İ., Eken Meriç, Ş., & Yaşar, E. (2020). On submanifolds of Kenmotsu manifold with Torqued vector field. Hacettepe Journal of Mathematics and Statistics, 49(2), 843-853. https://doi.org/10.15672/hujms.479184
AMA 1.Yoldaş Hİ, Eken Meriç Ş, Yaşar E. On submanifolds of Kenmotsu manifold with Torqued vector field. Hacettepe Journal of Mathematics and Statistics. 2020;49(2):843-853. doi:10.15672/hujms.479184
Chicago Yoldaş, Halil İbrahim, Şemsi Eken Meriç, and Erol Yaşar. 2020. “On Submanifolds of Kenmotsu Manifold With Torqued Vector Field”. Hacettepe Journal of Mathematics and Statistics 49 (2): 843-53. https://doi.org/10.15672/hujms.479184.
EndNote Yoldaş Hİ, Eken Meriç Ş, Yaşar E (April 1, 2020) On submanifolds of Kenmotsu manifold with Torqued vector field. Hacettepe Journal of Mathematics and Statistics 49 2 843–853.
IEEE [1]H. İ. Yoldaş, Ş. Eken Meriç, and E. Yaşar, “On submanifolds of Kenmotsu manifold with Torqued vector field”, Hacettepe Journal of Mathematics and Statistics, vol. 49, no. 2, pp. 843–853, Apr. 2020, doi: 10.15672/hujms.479184.
ISNAD Yoldaş, Halil İbrahim - Eken Meriç, Şemsi - Yaşar, Erol. “On Submanifolds of Kenmotsu Manifold With Torqued Vector Field”. Hacettepe Journal of Mathematics and Statistics 49/2 (April 1, 2020): 843-853. https://doi.org/10.15672/hujms.479184.
JAMA 1.Yoldaş Hİ, Eken Meriç Ş, Yaşar E. On submanifolds of Kenmotsu manifold with Torqued vector field. Hacettepe Journal of Mathematics and Statistics. 2020;49:843–853.
MLA Yoldaş, Halil İbrahim, et al. “On Submanifolds of Kenmotsu Manifold With Torqued Vector Field”. Hacettepe Journal of Mathematics and Statistics, vol. 49, no. 2, Apr. 2020, pp. 843-5, doi:10.15672/hujms.479184.
Vancouver 1.Yoldaş Hİ, Eken Meriç Ş, Yaşar E. On submanifolds of Kenmotsu manifold with Torqued vector field. Hacettepe Journal of Mathematics and Statistics [Internet]. 2020 Apr. 1;49(2):843-5. Available from: https://izlik.org/JA22LL32AG