Research Article
BibTex RIS Cite
Year 2020, , 1373 - 1382, 06.08.2020
https://doi.org/10.15672/hujms.479445

Abstract

References

  • [1] Y.N. Aliyev, On the basis properties of Sturm-Liouville problems with decreasing affine boundary conditions, Proc. IMM of NAS, 24, 35–52, 2006.
  • [2] Y.N. Aliyev and N.B. Kerimov, The basis property of Sturm-Liouville problems with boundary conditions depending quadratically on the eigenparameter, Arab. J. Sci. Eng. 33 (1A), 123–136, 2008.
  • [3] N.K. Bary, Treatise on Trigonometric Series, Vol II., Macmillian, New York, 1964.
  • [4] M.A. Evgrafov, Analytic Function (in Russian), Nauka, Moskow, 1965; trans. W.B. Saunders Comp., Philadephia and London, 1966.
  • [5] I.C. Gohberg and M.G. Krein, Introduction to the Theory of Linear Nonselfadjoint Operators, Moscow, 1965; Trans. Math. Monogr., Amer. Math. Soc., Rhode Island, 18, 1969.
  • [6] S. Goktas, N.B. Kerimov, and E.A. Maris, On the uniform convergence of spectral expansions for a spectral problem with a boundary condition rationally depending on the eigenparameter, J. Korean Math. Soc. 54 (4), 1175–1187, 2017.
  • [7] T. Gulsen, E. Yilmaz, and H. Koyunbakan, An inverse nodal problem for differential pencils with complex spectral parameter dependent boundary conditions, New Trends Math. Sci. 5 (1), 137–144, 2017.
  • [8] N.Yu. Kapustin and E.I. Moiseev, The basis property in of the systems of eigenfunctions corresponding to two problems with a spectral parameter in the boundary conditions, Diff. Eq. 36 (10), 1498–1501, 2000.
  • [9] B.S. Kashin and A.A. Saakyan, Orthogonal Series, Trans. Math. Monogr., Amer. Math. Soc. Providence, 75, 1989.
  • [10] N.B. Kerimov and Y.N. Aliyev, The basis property in $L_p(0, 1)$ of the boundary value problem rationally dependent on the eigenparameter, Studia Math. 174 (2), 201–212, 2006.
  • [11] N.B. Kerimov and Kh.R. Mamedov, On one boundary value problem with a spectral parameter in the boundary conditions, Siberian Math. J. 40 (2), 325–335, 1999.
  • [12] N.B. Kerimov and E.A. Maris, On the basis properties and convergence of expansions in terms of eigenfunctions for a spectral problem with a spectral parameter in the boundary condition, Proc. IMM of NAS (Special Issue) 40, 245–258, 2014.
  • [13] N.B. Kerimov and E.A. Maris, On the uniform convergence of the Fourier Series for one spectral problem with a spectral parameter in a boundary condition, Math. Methods Appl. Sci. 39 (9), 2298–2309, 2016.
  • [14] N.B. Kerimov and E.A. Maris, On the Uniform Convergence of Fourier Series Expansions for Sturm-Liouville Problems with a Spectral Parameter in the Boundary Conditions, Results Math. 73 (3), 102, 2018.
  • [15] N.B. Kerimov and V.S. Mirzoev, On the basis properties of one spectral problem with a spectral parameter in a boundary condition, Siberian Math. J. 44 (5), 813–816, 2003.
  • [16] N.B. Kerimov and R.G. Poladov, Basis properties of the system of eigenfunctions in the Sturm- Liouville problem with a spectral parameter in the boundary conditions, Dokl. Math. 85 (1), 8–13, 2015.
  • [17] N.B. Kerimov, S. Goktas, and E.A. Maris, Uniform convergence of the spectral expansions in terms of root functions for a spectral problem, Electron. J. Differ. Equ. 80, 1–14, 2016.
  • [18] B.M. Levitan and I.S. Sargsjan, Sturm-Liouville and Dirac Operators, Kluwer Academic Publishers: Netherlands, 1991.
  • [19] Kh.R. Mamedov, On one boundary value problem with parameter in the boundary conditions, Spectr Theory Oper. Appl. 11, 117–121, 1997 (in Russian).
  • [20] Kh.R. Mamedov, On a basic problem for a second order differential equation with a discontinuous coefficient and a spectral parameter in the boundary conditions, Proc. Seventh Internat. Conf. Geometry, Integrability and Quantization, Institute of Biophysics and Biomedical Engineering Bulgarian Academy of Sciences, 218–225, 2006.
  • [21] D.B. Marchenkov, On the convergence of spectral expansions of functions for problems with a spectral parameter in a boundary condition, Diff. Eq. 41, 1496–1500, 2005.
  • [22] D.B. Marchenkov, Basis property in $L_p(0, 1)$ of the system of eigenfunctions corresponding to a problem with a spectral parameter in the boundary condition, Diff. Eq. 42 (6), 905–908, 2006.
  • [23] A. Neamaty and Sh. Akbarpoor, Numerical solution of inverse nodal problem with an eigenvalue in the boundary condition, Inverse Probl. Sci. Eng. 25 (7), 978–994, 2017.
  • [24] I. Singer, Bases in Banach Spaces I, Springer-Verlag Berlin Heidelberg, New York, 1970.
  • [25] E. Yilmaz and H. Koyunbakan, Reconstruction of potential function and its derivatives for Sturm-Liouville problem with eigenvalues in boundary condition, Inverse Prob. Sci. Eng. 18 (7), 935–944, 2010.
  • [26] A. Zygmund, Trigonometric Series, Vol. II, 2nd Ed., Cambridge University Press, New York, 1959.

On the spectral properties of a Sturm-Liouville problem with eigenparameter in the boundary condition

Year 2020, , 1373 - 1382, 06.08.2020
https://doi.org/10.15672/hujms.479445

Abstract

The spectral problem
\[-y''+q(x)y=\lambda y,\ \ \ \ 0<x<1\]
\[y(0)=0, \quad y'(0)=\lambda(ay(1)+by'(1)),\]
is considered, where $\lambda$ is a spectral parameter, $q(x)\in{{L}_{1}}(0,1)$ is a complex-valued function, $a$ and $b$ are arbitrary complex numbers which satisfy the condition $|a|+|b|\ne 0$. We study the spectral properties (existence of eigenvalues, asymptotic formulae for eigenvalues and eigenfunctions, minimality and basicity of the system of eigenfunctions in ${{L}_{p}}(0,1)$) of the above-mentioned Sturm-Liouville problem.

References

  • [1] Y.N. Aliyev, On the basis properties of Sturm-Liouville problems with decreasing affine boundary conditions, Proc. IMM of NAS, 24, 35–52, 2006.
  • [2] Y.N. Aliyev and N.B. Kerimov, The basis property of Sturm-Liouville problems with boundary conditions depending quadratically on the eigenparameter, Arab. J. Sci. Eng. 33 (1A), 123–136, 2008.
  • [3] N.K. Bary, Treatise on Trigonometric Series, Vol II., Macmillian, New York, 1964.
  • [4] M.A. Evgrafov, Analytic Function (in Russian), Nauka, Moskow, 1965; trans. W.B. Saunders Comp., Philadephia and London, 1966.
  • [5] I.C. Gohberg and M.G. Krein, Introduction to the Theory of Linear Nonselfadjoint Operators, Moscow, 1965; Trans. Math. Monogr., Amer. Math. Soc., Rhode Island, 18, 1969.
  • [6] S. Goktas, N.B. Kerimov, and E.A. Maris, On the uniform convergence of spectral expansions for a spectral problem with a boundary condition rationally depending on the eigenparameter, J. Korean Math. Soc. 54 (4), 1175–1187, 2017.
  • [7] T. Gulsen, E. Yilmaz, and H. Koyunbakan, An inverse nodal problem for differential pencils with complex spectral parameter dependent boundary conditions, New Trends Math. Sci. 5 (1), 137–144, 2017.
  • [8] N.Yu. Kapustin and E.I. Moiseev, The basis property in of the systems of eigenfunctions corresponding to two problems with a spectral parameter in the boundary conditions, Diff. Eq. 36 (10), 1498–1501, 2000.
  • [9] B.S. Kashin and A.A. Saakyan, Orthogonal Series, Trans. Math. Monogr., Amer. Math. Soc. Providence, 75, 1989.
  • [10] N.B. Kerimov and Y.N. Aliyev, The basis property in $L_p(0, 1)$ of the boundary value problem rationally dependent on the eigenparameter, Studia Math. 174 (2), 201–212, 2006.
  • [11] N.B. Kerimov and Kh.R. Mamedov, On one boundary value problem with a spectral parameter in the boundary conditions, Siberian Math. J. 40 (2), 325–335, 1999.
  • [12] N.B. Kerimov and E.A. Maris, On the basis properties and convergence of expansions in terms of eigenfunctions for a spectral problem with a spectral parameter in the boundary condition, Proc. IMM of NAS (Special Issue) 40, 245–258, 2014.
  • [13] N.B. Kerimov and E.A. Maris, On the uniform convergence of the Fourier Series for one spectral problem with a spectral parameter in a boundary condition, Math. Methods Appl. Sci. 39 (9), 2298–2309, 2016.
  • [14] N.B. Kerimov and E.A. Maris, On the Uniform Convergence of Fourier Series Expansions for Sturm-Liouville Problems with a Spectral Parameter in the Boundary Conditions, Results Math. 73 (3), 102, 2018.
  • [15] N.B. Kerimov and V.S. Mirzoev, On the basis properties of one spectral problem with a spectral parameter in a boundary condition, Siberian Math. J. 44 (5), 813–816, 2003.
  • [16] N.B. Kerimov and R.G. Poladov, Basis properties of the system of eigenfunctions in the Sturm- Liouville problem with a spectral parameter in the boundary conditions, Dokl. Math. 85 (1), 8–13, 2015.
  • [17] N.B. Kerimov, S. Goktas, and E.A. Maris, Uniform convergence of the spectral expansions in terms of root functions for a spectral problem, Electron. J. Differ. Equ. 80, 1–14, 2016.
  • [18] B.M. Levitan and I.S. Sargsjan, Sturm-Liouville and Dirac Operators, Kluwer Academic Publishers: Netherlands, 1991.
  • [19] Kh.R. Mamedov, On one boundary value problem with parameter in the boundary conditions, Spectr Theory Oper. Appl. 11, 117–121, 1997 (in Russian).
  • [20] Kh.R. Mamedov, On a basic problem for a second order differential equation with a discontinuous coefficient and a spectral parameter in the boundary conditions, Proc. Seventh Internat. Conf. Geometry, Integrability and Quantization, Institute of Biophysics and Biomedical Engineering Bulgarian Academy of Sciences, 218–225, 2006.
  • [21] D.B. Marchenkov, On the convergence of spectral expansions of functions for problems with a spectral parameter in a boundary condition, Diff. Eq. 41, 1496–1500, 2005.
  • [22] D.B. Marchenkov, Basis property in $L_p(0, 1)$ of the system of eigenfunctions corresponding to a problem with a spectral parameter in the boundary condition, Diff. Eq. 42 (6), 905–908, 2006.
  • [23] A. Neamaty and Sh. Akbarpoor, Numerical solution of inverse nodal problem with an eigenvalue in the boundary condition, Inverse Probl. Sci. Eng. 25 (7), 978–994, 2017.
  • [24] I. Singer, Bases in Banach Spaces I, Springer-Verlag Berlin Heidelberg, New York, 1970.
  • [25] E. Yilmaz and H. Koyunbakan, Reconstruction of potential function and its derivatives for Sturm-Liouville problem with eigenvalues in boundary condition, Inverse Prob. Sci. Eng. 18 (7), 935–944, 2010.
  • [26] A. Zygmund, Trigonometric Series, Vol. II, 2nd Ed., Cambridge University Press, New York, 1959.
There are 26 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Emir Ali Maris 0000-0001-7620-8754

Sertaç Göktaş 0000-0001-7842-6309

Publication Date August 6, 2020
Published in Issue Year 2020

Cite

APA Maris, E. A., & Göktaş, S. (2020). On the spectral properties of a Sturm-Liouville problem with eigenparameter in the boundary condition. Hacettepe Journal of Mathematics and Statistics, 49(4), 1373-1382. https://doi.org/10.15672/hujms.479445
AMA Maris EA, Göktaş S. On the spectral properties of a Sturm-Liouville problem with eigenparameter in the boundary condition. Hacettepe Journal of Mathematics and Statistics. August 2020;49(4):1373-1382. doi:10.15672/hujms.479445
Chicago Maris, Emir Ali, and Sertaç Göktaş. “On the Spectral Properties of a Sturm-Liouville Problem With Eigenparameter in the Boundary Condition”. Hacettepe Journal of Mathematics and Statistics 49, no. 4 (August 2020): 1373-82. https://doi.org/10.15672/hujms.479445.
EndNote Maris EA, Göktaş S (August 1, 2020) On the spectral properties of a Sturm-Liouville problem with eigenparameter in the boundary condition. Hacettepe Journal of Mathematics and Statistics 49 4 1373–1382.
IEEE E. A. Maris and S. Göktaş, “On the spectral properties of a Sturm-Liouville problem with eigenparameter in the boundary condition”, Hacettepe Journal of Mathematics and Statistics, vol. 49, no. 4, pp. 1373–1382, 2020, doi: 10.15672/hujms.479445.
ISNAD Maris, Emir Ali - Göktaş, Sertaç. “On the Spectral Properties of a Sturm-Liouville Problem With Eigenparameter in the Boundary Condition”. Hacettepe Journal of Mathematics and Statistics 49/4 (August 2020), 1373-1382. https://doi.org/10.15672/hujms.479445.
JAMA Maris EA, Göktaş S. On the spectral properties of a Sturm-Liouville problem with eigenparameter in the boundary condition. Hacettepe Journal of Mathematics and Statistics. 2020;49:1373–1382.
MLA Maris, Emir Ali and Sertaç Göktaş. “On the Spectral Properties of a Sturm-Liouville Problem With Eigenparameter in the Boundary Condition”. Hacettepe Journal of Mathematics and Statistics, vol. 49, no. 4, 2020, pp. 1373-82, doi:10.15672/hujms.479445.
Vancouver Maris EA, Göktaş S. On the spectral properties of a Sturm-Liouville problem with eigenparameter in the boundary condition. Hacettepe Journal of Mathematics and Statistics. 2020;49(4):1373-82.