Research Article
BibTex RIS Cite
Year 2020, , 1006 - 1019, 02.06.2020
https://doi.org/10.15672/hujms.496068

Abstract

References

  • [1] G. Ganchev and A. Borisov, Note on the almost complex manifolds with a Norden metric, Compt. Rend. Acad. Bulg. Sci. 39 (5), 31–34, 1986.
  • [2] G. Ganchev, K. Gribachev and V. Mihova, B-connections and their conformal invari- ants on conformally Kähler manifolds with B-metric, Publ. Inst. Math. (Beograd) (N.S.) 42, 107–121, 1987.
  • [3] G. Ganchev and V. Mihova, Canonical connection and the canonical conformal group on an almost complex manifold with B-metric, Ann. Univ. Sofia Fac. Math. Inform. 81 (1), 195–206, 1987.
  • [4] K.I. Gribachev, D.G. Mekerov and G.D. Djelepov, Generalized B-manifolds, Compt. Rend. Acad. Bulg. Sci. 38 (3), 299–302, 1985.
  • [5] H.A. Hayden, Sub-spaces of a space with torsion, Proc. London Math. Soc. S2-34, 27–50, 1932.
  • [6] M. Iscan and A.A. Salimov, On Kähler-Norden manifolds, Proc. Indian Acad. Sci. (Math. Sci.), 119 (1), 71–80, 2009.
  • [7] M. Manev, On canonical-type connections on almost contact complex Riemannian manifolds, Filomat, 29 (3), 411–425, 2015.
  • [8] A. Salimov, Tensor operators and their applications, (Mathematics Research Devel- opments Series), Nova Science Publ., New York, 2013.
  • [9] S. Tachibana, Analytic tensor and its generalization, Tohoku Math. J. 12, 208–221, 1960.
  • [10] K. Yano, On semi-symmetric metric connection, Rev. Roumaine Math. Pures Appl. 15, 1579–1586, 1970.
  • [11] K. Yano and M. Ako, On certain operators associated with tensor fields, Kodai Math. Sem. Rep. 20, 414–436, 1968.
  • [12] K. Yano and T. Imai, On semi-symmetric metric F- connection, Tensor (N.S.) 29 (2), 134–138, 1975.

On Anti-Kähler manifolds with complex semi-symmetric metric $F-$connection

Year 2020, , 1006 - 1019, 02.06.2020
https://doi.org/10.15672/hujms.496068

Abstract

In this paper, we construct a complex semi-symmetric metric $F$-connection on an anti-Kähler manifold. First, we present some results concerning the torsion tensor of the complex semi-symmetric metric $F$-connection. Finally, we find expressions of the curvature tensor, the conharmonic curvature tensor and the Weyl projective curvature tensor of such connection, and study their properties.

References

  • [1] G. Ganchev and A. Borisov, Note on the almost complex manifolds with a Norden metric, Compt. Rend. Acad. Bulg. Sci. 39 (5), 31–34, 1986.
  • [2] G. Ganchev, K. Gribachev and V. Mihova, B-connections and their conformal invari- ants on conformally Kähler manifolds with B-metric, Publ. Inst. Math. (Beograd) (N.S.) 42, 107–121, 1987.
  • [3] G. Ganchev and V. Mihova, Canonical connection and the canonical conformal group on an almost complex manifold with B-metric, Ann. Univ. Sofia Fac. Math. Inform. 81 (1), 195–206, 1987.
  • [4] K.I. Gribachev, D.G. Mekerov and G.D. Djelepov, Generalized B-manifolds, Compt. Rend. Acad. Bulg. Sci. 38 (3), 299–302, 1985.
  • [5] H.A. Hayden, Sub-spaces of a space with torsion, Proc. London Math. Soc. S2-34, 27–50, 1932.
  • [6] M. Iscan and A.A. Salimov, On Kähler-Norden manifolds, Proc. Indian Acad. Sci. (Math. Sci.), 119 (1), 71–80, 2009.
  • [7] M. Manev, On canonical-type connections on almost contact complex Riemannian manifolds, Filomat, 29 (3), 411–425, 2015.
  • [8] A. Salimov, Tensor operators and their applications, (Mathematics Research Devel- opments Series), Nova Science Publ., New York, 2013.
  • [9] S. Tachibana, Analytic tensor and its generalization, Tohoku Math. J. 12, 208–221, 1960.
  • [10] K. Yano, On semi-symmetric metric connection, Rev. Roumaine Math. Pures Appl. 15, 1579–1586, 1970.
  • [11] K. Yano and M. Ako, On certain operators associated with tensor fields, Kodai Math. Sem. Rep. 20, 414–436, 1968.
  • [12] K. Yano and T. Imai, On semi-symmetric metric F- connection, Tensor (N.S.) 29 (2), 134–138, 1975.
There are 12 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Çağrı Karaman 0000-0001-6532-6317

Aydın Gezer 0000-0001-7505-0385

Publication Date June 2, 2020
Published in Issue Year 2020

Cite

APA Karaman, Ç., & Gezer, A. (2020). On Anti-Kähler manifolds with complex semi-symmetric metric $F-$connection. Hacettepe Journal of Mathematics and Statistics, 49(3), 1006-1019. https://doi.org/10.15672/hujms.496068
AMA Karaman Ç, Gezer A. On Anti-Kähler manifolds with complex semi-symmetric metric $F-$connection. Hacettepe Journal of Mathematics and Statistics. June 2020;49(3):1006-1019. doi:10.15672/hujms.496068
Chicago Karaman, Çağrı, and Aydın Gezer. “On Anti-Kähler Manifolds With Complex Semi-Symmetric Metric $F-$connection”. Hacettepe Journal of Mathematics and Statistics 49, no. 3 (June 2020): 1006-19. https://doi.org/10.15672/hujms.496068.
EndNote Karaman Ç, Gezer A (June 1, 2020) On Anti-Kähler manifolds with complex semi-symmetric metric $F-$connection. Hacettepe Journal of Mathematics and Statistics 49 3 1006–1019.
IEEE Ç. Karaman and A. Gezer, “On Anti-Kähler manifolds with complex semi-symmetric metric $F-$connection”, Hacettepe Journal of Mathematics and Statistics, vol. 49, no. 3, pp. 1006–1019, 2020, doi: 10.15672/hujms.496068.
ISNAD Karaman, Çağrı - Gezer, Aydın. “On Anti-Kähler Manifolds With Complex Semi-Symmetric Metric $F-$connection”. Hacettepe Journal of Mathematics and Statistics 49/3 (June 2020), 1006-1019. https://doi.org/10.15672/hujms.496068.
JAMA Karaman Ç, Gezer A. On Anti-Kähler manifolds with complex semi-symmetric metric $F-$connection. Hacettepe Journal of Mathematics and Statistics. 2020;49:1006–1019.
MLA Karaman, Çağrı and Aydın Gezer. “On Anti-Kähler Manifolds With Complex Semi-Symmetric Metric $F-$connection”. Hacettepe Journal of Mathematics and Statistics, vol. 49, no. 3, 2020, pp. 1006-19, doi:10.15672/hujms.496068.
Vancouver Karaman Ç, Gezer A. On Anti-Kähler manifolds with complex semi-symmetric metric $F-$connection. Hacettepe Journal of Mathematics and Statistics. 2020;49(3):1006-19.