Research Article
BibTex RIS Cite
Year 2020, , 1150 - 1158, 02.06.2020
https://doi.org/10.15672/hujms.513851

Abstract

References

  • [1] Y. Cao and J. Wang, A note on algebra automorphisms of strictly upper triangular matrices over commutative rings, Linear Algebra Appl. 311, 187–193, 2000.
  • [2] S.P. Coelho, Automorphism group of certain algebras of triangular matrices, Arch. Math. 61, 119–123, 1993.
  • [3] T.P. Kezlan, A note on algebra automorphisms of triangular matrices over commutative rings, Linear Algebra Appl. 135, 181–184, 1990.

Automorphisms of a certain subalgebra of the upper triangular matrix algebra

Year 2020, , 1150 - 1158, 02.06.2020
https://doi.org/10.15672/hujms.513851

Abstract

For a commutative ring $R$ with unity, the $R$-algebra of strictly upper triangular $n\times n$ matrices over $R$ is denoted by $N_{n}\left( R\right) $, where $n$ is a positive integer greater than $1$. For the identity matrix $I$, $\alpha \in R$, $A \in N_n(R)$, the set of all elements $\alpha I+A$ is defined as the scalar upper triangular matrix algebra $ST_n(R)$ which is a subalgebra of the upper triangular matrices $T_n(R) .$ In this paper, we investigate the $R$-algebra automorphisms of $ST_{n}\left( R\right) .$ We extend the automorphisms of $N_{n}\left( R\right) $ to $ST_{n}\left( R\right)$ and classify all the automorphisms of $ST_{n}\left( R\right) .$ We generalize the results of Cao and Wang and prove that not all automorphisms of $ST_{n}\left( R\right) $ can be extended to the automorphisms of $T_{n}(R).$

References

  • [1] Y. Cao and J. Wang, A note on algebra automorphisms of strictly upper triangular matrices over commutative rings, Linear Algebra Appl. 311, 187–193, 2000.
  • [2] S.P. Coelho, Automorphism group of certain algebras of triangular matrices, Arch. Math. 61, 119–123, 1993.
  • [3] T.P. Kezlan, A note on algebra automorphisms of triangular matrices over commutative rings, Linear Algebra Appl. 135, 181–184, 1990.
There are 3 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Özkay Özkan 0000-0001-6755-1497

Mustafa Akkurt 0000-0002-8072-8426

Publication Date June 2, 2020
Published in Issue Year 2020

Cite

APA Özkan, Ö., & Akkurt, M. (2020). Automorphisms of a certain subalgebra of the upper triangular matrix algebra. Hacettepe Journal of Mathematics and Statistics, 49(3), 1150-1158. https://doi.org/10.15672/hujms.513851
AMA Özkan Ö, Akkurt M. Automorphisms of a certain subalgebra of the upper triangular matrix algebra. Hacettepe Journal of Mathematics and Statistics. June 2020;49(3):1150-1158. doi:10.15672/hujms.513851
Chicago Özkan, Özkay, and Mustafa Akkurt. “Automorphisms of a Certain Subalgebra of the Upper Triangular Matrix Algebra”. Hacettepe Journal of Mathematics and Statistics 49, no. 3 (June 2020): 1150-58. https://doi.org/10.15672/hujms.513851.
EndNote Özkan Ö, Akkurt M (June 1, 2020) Automorphisms of a certain subalgebra of the upper triangular matrix algebra. Hacettepe Journal of Mathematics and Statistics 49 3 1150–1158.
IEEE Ö. Özkan and M. Akkurt, “Automorphisms of a certain subalgebra of the upper triangular matrix algebra”, Hacettepe Journal of Mathematics and Statistics, vol. 49, no. 3, pp. 1150–1158, 2020, doi: 10.15672/hujms.513851.
ISNAD Özkan, Özkay - Akkurt, Mustafa. “Automorphisms of a Certain Subalgebra of the Upper Triangular Matrix Algebra”. Hacettepe Journal of Mathematics and Statistics 49/3 (June 2020), 1150-1158. https://doi.org/10.15672/hujms.513851.
JAMA Özkan Ö, Akkurt M. Automorphisms of a certain subalgebra of the upper triangular matrix algebra. Hacettepe Journal of Mathematics and Statistics. 2020;49:1150–1158.
MLA Özkan, Özkay and Mustafa Akkurt. “Automorphisms of a Certain Subalgebra of the Upper Triangular Matrix Algebra”. Hacettepe Journal of Mathematics and Statistics, vol. 49, no. 3, 2020, pp. 1150-8, doi:10.15672/hujms.513851.
Vancouver Özkan Ö, Akkurt M. Automorphisms of a certain subalgebra of the upper triangular matrix algebra. Hacettepe Journal of Mathematics and Statistics. 2020;49(3):1150-8.