Research Article
BibTex RIS Cite
Year 2020, , 1315 - 1333, 06.08.2020
https://doi.org/10.15672/hujms.532964

Abstract

References

  • [1] J. Agler and M. Stankus, m-isometric transformations of Hilbert space. I, Integral Equations Operator Theory 21, 383–429, 1995.
  • [2] T. Bermúdez, A. Martinón, V. Müller and J. A. Noda, Perturbation of m-Isometries by Nilpotent Operators, Abstr. Appl. Anal. 2014, Article ID 745479, 6 pages, 2014.
  • [3] T. Bermúdez, A. Martinón and J.A. Noda, Products of m-isometries, Linear Algebra Appl. 438, 80–86, 2013.
  • [4] T. Bermúdez, A. Martinón and J.A. Noda, An isometry plus a nilpotent operator is an m-isometry. Applications, J. Math. Anal. Appl. 407 (2), 505-512, 2013.
  • [5] T. Bermúdez, A. Martinón and J.A. Noda, Arithmetic Progressions and Its Applications to (m, q)-Isometries: A Survey. Results Math. 69, 177-199, 2016.
  • [6] T. Bermúdez, C.D. Mendoza and A. Martinón, Powers of m-isometries, Studia Math. 208 (3), 2012.
  • [7] F. Botelho, J. Jamison and B. Zheng, Strict isometries of arbitrary orders, Linear Algebra Appl. 436, 3303–3314, 2012.
  • [8] M. Ch¯o, S. Óta and K. Tanahashi, Invertible weighted shift operators which are misometries, Proc. Amer. Math. Soc. 141 (12), 4241-4247, 2013.
  • [9] B.P. Duggal, Tensor product of n-isometries, Linear Algebra Appl. 437, 307-318, 2012.
  • [10] C. Gu, Elementary operators which are m-isometries, Linear Algebra Appl. 451, 49-64, 2014.
  • [11] C. Gu, Structures of left n-invertible operators and their applications, Studia Math. 226 (3), 189-211, 2015.
  • [12] C. Gu, Functional calculus for m-isometries and related operators on Hilbert spaces and Banach spaces, Acta Sci. Math. (Szeged) 81, 605–641, 2015.
  • [13] C. Gu, Examples of m-isometric tuples of operators on a Hilbert space, J. Korean Math. Soc. 55 (1), 225–251, 2018.
  • [14] C. Gu and M. Stankus, Some results on higher order isometries and symmetries: Products and sums with a nilpotent operator, Linear Algebra Appl. 469, 500-509, 2015.
  • [15] J. Kyu Han, H. Youl Lee and W. Young Lee, Invertible completions of 2 × 2 upper triangular operator matrices, Proc. Amer. Math. Soc. 128, 119–123, 1999.
  • [16] O.A. Mahmoud Sid Ahmed, m-isometric operators on Banach spaces, Asian- European J. Math. 3 (1), 19 pages, 2010.
  • [17] O.A. Mahmoud Sid Ahmed, Generalization of m-partial isometries on a Hilbert spaces, Int. J. Pure Appl. Math. 104 (4), 599–619, 2015.
  • [18] S. Mecheri and S. M. Patel, On quasi-2-isometric operators, Linear Multlinear Algebra 66 (5), 1019–1025, 2018.
  • [19] S. Mecheri and T. Prasad, On n-quasi-m-isometric operators, Asian-Eur. J. Math. 9 (3), 1650073, 8 pages, 2016.
  • [20] S.M. Patel, A note on quasi-isometries, Glas. Mat. 35 (55), 307–312, 2002.
  • [21] S.M. Patel, 2-isometric operators, Glas. Mat. 37 (57), 141–145, 2002.
  • [22] S.M. Patel, A note on quasi-isometries II, Glas. Mat. 38 (58), 111-120, 2003.
  • [23] M.A. Rosenblum, On the operator equation BX − XA = Q, Duke Math. J. 23, 263-269, 1956.
  • [24] A. Saddi and O. A. Mahmoud Sid Ahmed, m-partial isometries on Hilbert, spaces Intern. J. Funct. Anal. Operators Theory Appl. 2 (1), 67-83, 2010.
  • [25] L. Suciu, Quasi-isometries in semi-Hilbertian spaces, Linear Algebra Appl. 430, 2474– 2487, 2009.

Some results on higher orders quasi-isometries

Year 2020, , 1315 - 1333, 06.08.2020
https://doi.org/10.15672/hujms.532964

Abstract

The purpose of the present paper is to pursue further study of a class of linear bounded operators, known as $n$-quasi-$m$-isometric operators acting on an infinite complex separable Hilbert space ${\mathcal H}$. We give an equivalent condition for any $T$ to be $n$-quasi-$m$-isometric operator. Using this result we prove that any power of an $n$-quasi-$m$-isometric operator is also an $n$-quasi-$m$-isometric operator. In general the converse is not true. However, we prove that if $T^r$ and $T^{r+1}$ are $n$-quasi-$m$-isometries for a positive integer $r$, then T is an $n$-quasi-$m$-isometric operator. We study the sum of an $n$-quasi-$m$-isometric operator with a nilpotent operator. We also study the product and tensor product of two $n$-quasi-$m$-isometries. Further, we define $n$-quasi strict $m$-isometric operators and prove their basic properties.

References

  • [1] J. Agler and M. Stankus, m-isometric transformations of Hilbert space. I, Integral Equations Operator Theory 21, 383–429, 1995.
  • [2] T. Bermúdez, A. Martinón, V. Müller and J. A. Noda, Perturbation of m-Isometries by Nilpotent Operators, Abstr. Appl. Anal. 2014, Article ID 745479, 6 pages, 2014.
  • [3] T. Bermúdez, A. Martinón and J.A. Noda, Products of m-isometries, Linear Algebra Appl. 438, 80–86, 2013.
  • [4] T. Bermúdez, A. Martinón and J.A. Noda, An isometry plus a nilpotent operator is an m-isometry. Applications, J. Math. Anal. Appl. 407 (2), 505-512, 2013.
  • [5] T. Bermúdez, A. Martinón and J.A. Noda, Arithmetic Progressions and Its Applications to (m, q)-Isometries: A Survey. Results Math. 69, 177-199, 2016.
  • [6] T. Bermúdez, C.D. Mendoza and A. Martinón, Powers of m-isometries, Studia Math. 208 (3), 2012.
  • [7] F. Botelho, J. Jamison and B. Zheng, Strict isometries of arbitrary orders, Linear Algebra Appl. 436, 3303–3314, 2012.
  • [8] M. Ch¯o, S. Óta and K. Tanahashi, Invertible weighted shift operators which are misometries, Proc. Amer. Math. Soc. 141 (12), 4241-4247, 2013.
  • [9] B.P. Duggal, Tensor product of n-isometries, Linear Algebra Appl. 437, 307-318, 2012.
  • [10] C. Gu, Elementary operators which are m-isometries, Linear Algebra Appl. 451, 49-64, 2014.
  • [11] C. Gu, Structures of left n-invertible operators and their applications, Studia Math. 226 (3), 189-211, 2015.
  • [12] C. Gu, Functional calculus for m-isometries and related operators on Hilbert spaces and Banach spaces, Acta Sci. Math. (Szeged) 81, 605–641, 2015.
  • [13] C. Gu, Examples of m-isometric tuples of operators on a Hilbert space, J. Korean Math. Soc. 55 (1), 225–251, 2018.
  • [14] C. Gu and M. Stankus, Some results on higher order isometries and symmetries: Products and sums with a nilpotent operator, Linear Algebra Appl. 469, 500-509, 2015.
  • [15] J. Kyu Han, H. Youl Lee and W. Young Lee, Invertible completions of 2 × 2 upper triangular operator matrices, Proc. Amer. Math. Soc. 128, 119–123, 1999.
  • [16] O.A. Mahmoud Sid Ahmed, m-isometric operators on Banach spaces, Asian- European J. Math. 3 (1), 19 pages, 2010.
  • [17] O.A. Mahmoud Sid Ahmed, Generalization of m-partial isometries on a Hilbert spaces, Int. J. Pure Appl. Math. 104 (4), 599–619, 2015.
  • [18] S. Mecheri and S. M. Patel, On quasi-2-isometric operators, Linear Multlinear Algebra 66 (5), 1019–1025, 2018.
  • [19] S. Mecheri and T. Prasad, On n-quasi-m-isometric operators, Asian-Eur. J. Math. 9 (3), 1650073, 8 pages, 2016.
  • [20] S.M. Patel, A note on quasi-isometries, Glas. Mat. 35 (55), 307–312, 2002.
  • [21] S.M. Patel, 2-isometric operators, Glas. Mat. 37 (57), 141–145, 2002.
  • [22] S.M. Patel, A note on quasi-isometries II, Glas. Mat. 38 (58), 111-120, 2003.
  • [23] M.A. Rosenblum, On the operator equation BX − XA = Q, Duke Math. J. 23, 263-269, 1956.
  • [24] A. Saddi and O. A. Mahmoud Sid Ahmed, m-partial isometries on Hilbert, spaces Intern. J. Funct. Anal. Operators Theory Appl. 2 (1), 67-83, 2010.
  • [25] L. Suciu, Quasi-isometries in semi-Hilbertian spaces, Linear Algebra Appl. 430, 2474– 2487, 2009.
There are 25 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Sid Ahmed Ould Ahmed Mahmoud 0000-0002-6891-7849

Adel Saddi This is me 0000-0001-5034-3958

Khadija Gherairi This is me 0000-0002-5269-8186

Publication Date August 6, 2020
Published in Issue Year 2020

Cite

APA Ould Ahmed Mahmoud, S. A., Saddi, A., & Gherairi, K. (2020). Some results on higher orders quasi-isometries. Hacettepe Journal of Mathematics and Statistics, 49(4), 1315-1333. https://doi.org/10.15672/hujms.532964
AMA Ould Ahmed Mahmoud SA, Saddi A, Gherairi K. Some results on higher orders quasi-isometries. Hacettepe Journal of Mathematics and Statistics. August 2020;49(4):1315-1333. doi:10.15672/hujms.532964
Chicago Ould Ahmed Mahmoud, Sid Ahmed, Adel Saddi, and Khadija Gherairi. “Some Results on Higher Orders Quasi-Isometries”. Hacettepe Journal of Mathematics and Statistics 49, no. 4 (August 2020): 1315-33. https://doi.org/10.15672/hujms.532964.
EndNote Ould Ahmed Mahmoud SA, Saddi A, Gherairi K (August 1, 2020) Some results on higher orders quasi-isometries. Hacettepe Journal of Mathematics and Statistics 49 4 1315–1333.
IEEE S. A. Ould Ahmed Mahmoud, A. Saddi, and K. Gherairi, “Some results on higher orders quasi-isometries”, Hacettepe Journal of Mathematics and Statistics, vol. 49, no. 4, pp. 1315–1333, 2020, doi: 10.15672/hujms.532964.
ISNAD Ould Ahmed Mahmoud, Sid Ahmed et al. “Some Results on Higher Orders Quasi-Isometries”. Hacettepe Journal of Mathematics and Statistics 49/4 (August 2020), 1315-1333. https://doi.org/10.15672/hujms.532964.
JAMA Ould Ahmed Mahmoud SA, Saddi A, Gherairi K. Some results on higher orders quasi-isometries. Hacettepe Journal of Mathematics and Statistics. 2020;49:1315–1333.
MLA Ould Ahmed Mahmoud, Sid Ahmed et al. “Some Results on Higher Orders Quasi-Isometries”. Hacettepe Journal of Mathematics and Statistics, vol. 49, no. 4, 2020, pp. 1315-33, doi:10.15672/hujms.532964.
Vancouver Ould Ahmed Mahmoud SA, Saddi A, Gherairi K. Some results on higher orders quasi-isometries. Hacettepe Journal of Mathematics and Statistics. 2020;49(4):1315-33.

Cited By