Research Article
BibTex RIS Cite
Year 2020, , 1777 - 1787, 06.10.2020
https://doi.org/10.15672/hujms.535246

Abstract

References

  • [1] R.M. Ali, Coefficients of the inverse of strongly starlike functions, Bull. Malays. Math. Sci. Soc. 26 (1), 63–71, 2003.
  • [2] R.M. Ali, N.E. Cho, V. Ravichandran and S.S. Kumar, First order differential subor- dination for functions associated with the lemniscate of Bernoulli, Taiwanese J. Math. 16 (3), 1017–1026, 2012.
  • [3] M. Arif, L. Rani, M. Raza and P. Zaprawa, Fourth Hankel determinant for a family of functions with bounded turning, Bull. Korean Math. Soc. 55 (6), 1703-1711, 2018.
  • [4] M. Arif, L. Rani, M. Raza and P. Zaprawa, Fourth Hankel determinant for a set of starlike function, submitted.
  • [5] K.O. Babalola, On $H_{3}(1)$ Hankel determinant for some classes of univalent functions, Inequal. Theory Appl. 6, 1–7, 2007.
  • [6] C. Carathéodory, Über den variabilitätsbereich der koeffizienten von potenzreihen die gegebene werte nicht annehmen, Math. Ann. 64, 95–115, 1907.
  • [7] C. Carathéodory, Über den variabilitätsbereich der fourier’schen konstanten von pos- itiven harmonischen funktionen, Rend. Circ. Mat. Palermo, 32, 193-127, 1911.
  • [8] E. Deniz and L. Budak, Second Hankel determinat for certain analytic functions satisfying subordinate condition, Math. Slovaca, 68 (2), 463–471, 2018.
  • [9] M. Fekete and G. Szegö, Eine bemerkung uber ungerade schlichte funktionen, J. Lon- don Math. Soc. 8, 85–89, 1933.
  • [10] A.W. Goodman, Univalent Functions, Mariner Publications, Tampa, FLorida, 1983.
  • [11] S.A. Halim and R. Omar, Applications of certain functions associated with lemniscate Bernoulli, J. Indones. Math. Soc. 18 (2), 93–99, 2012.
  • [12] A. Janteng, S.A. Halim and M. Darus, Hankel determinant for starlike and convex functions, Int. J. Math. Anal. 1 (13), 619–625, 2007.
  • [13] R.J. Libera and E.J. Zlotkiewicz, Early coefficients of the inverse of a regular convex function, Proc. Amer. Math. Soc. 85, 225-230, 1982.
  • [14] J.W. Noonan and D.K. Thomas, On second Hankel determinant of a really mean p-valent functions, Trans. Amer. Math. Soc. 223 (2), 337–346, 1976.
  • [15] V. Ravichandran and S. Verma, Bound for the fifth coefficient of certain starlike functions, C. R. Math. Acad. Sci. Paris, 353 (6), 505–510, 2015.
  • [16] M. Raza and S.N. Malik, Upper bound of the third Hankel determinant for a class of analytic functions related with with the lemniscate of Bernoulli, J. Inequal. Appl. (2013), art. 412, 2013.
  • [17] J. Sokól, On application of certain sufficient condition for starlikeness, J. Math. Appl. 30, 40–53, 2008.
  • [18] J. Sokól, Radius problem in the class $\mathcal{SL}^{\ast }$, Appl. Math. Comput. 214, 569–573, 2009.
  • [19] J. Sokól, Coefficient estimates in a class of strongly starlike functions, Kyungpook Math. J. 49, 349–353, 2009.
  • [20] J. Sokól and D.K. Thomas, Further results on a class of starlike functions related to the Bernoulli lemniscate, Houston J. Math. 44, 83–95, 2018.
  • [21] J. Sokól and J. Stankiewicz, Radius of convexity of some subclasses of strongly starlike functions, Folia Scient. Univ. Tech. Resoviensis, 147, 101–105, 1996.

On fourth Hankel determinant for functions associated with Bernoulli's lemniscate

Year 2020, , 1777 - 1787, 06.10.2020
https://doi.org/10.15672/hujms.535246

Abstract

The aim of this paper is to find an upper bound of the fourth Hankel determinant $H_{4}(1)$ for a subclass of analytic functions associated with the right half of the Bernoulli's lemniscate of the form $\left(x^{2}+y^{2}\right) ^{2}-2\left( x^{2}-y^{2}\right) =0$. The problem is also discussed for 2-fold and 3-fold symmetric functions. The key tools in the proof of our main results are the coefficient inequalities for class $\mathcal{P}$ of functions with positive real part.

***************************************************************************************************************************

References

  • [1] R.M. Ali, Coefficients of the inverse of strongly starlike functions, Bull. Malays. Math. Sci. Soc. 26 (1), 63–71, 2003.
  • [2] R.M. Ali, N.E. Cho, V. Ravichandran and S.S. Kumar, First order differential subor- dination for functions associated with the lemniscate of Bernoulli, Taiwanese J. Math. 16 (3), 1017–1026, 2012.
  • [3] M. Arif, L. Rani, M. Raza and P. Zaprawa, Fourth Hankel determinant for a family of functions with bounded turning, Bull. Korean Math. Soc. 55 (6), 1703-1711, 2018.
  • [4] M. Arif, L. Rani, M. Raza and P. Zaprawa, Fourth Hankel determinant for a set of starlike function, submitted.
  • [5] K.O. Babalola, On $H_{3}(1)$ Hankel determinant for some classes of univalent functions, Inequal. Theory Appl. 6, 1–7, 2007.
  • [6] C. Carathéodory, Über den variabilitätsbereich der koeffizienten von potenzreihen die gegebene werte nicht annehmen, Math. Ann. 64, 95–115, 1907.
  • [7] C. Carathéodory, Über den variabilitätsbereich der fourier’schen konstanten von pos- itiven harmonischen funktionen, Rend. Circ. Mat. Palermo, 32, 193-127, 1911.
  • [8] E. Deniz and L. Budak, Second Hankel determinat for certain analytic functions satisfying subordinate condition, Math. Slovaca, 68 (2), 463–471, 2018.
  • [9] M. Fekete and G. Szegö, Eine bemerkung uber ungerade schlichte funktionen, J. Lon- don Math. Soc. 8, 85–89, 1933.
  • [10] A.W. Goodman, Univalent Functions, Mariner Publications, Tampa, FLorida, 1983.
  • [11] S.A. Halim and R. Omar, Applications of certain functions associated with lemniscate Bernoulli, J. Indones. Math. Soc. 18 (2), 93–99, 2012.
  • [12] A. Janteng, S.A. Halim and M. Darus, Hankel determinant for starlike and convex functions, Int. J. Math. Anal. 1 (13), 619–625, 2007.
  • [13] R.J. Libera and E.J. Zlotkiewicz, Early coefficients of the inverse of a regular convex function, Proc. Amer. Math. Soc. 85, 225-230, 1982.
  • [14] J.W. Noonan and D.K. Thomas, On second Hankel determinant of a really mean p-valent functions, Trans. Amer. Math. Soc. 223 (2), 337–346, 1976.
  • [15] V. Ravichandran and S. Verma, Bound for the fifth coefficient of certain starlike functions, C. R. Math. Acad. Sci. Paris, 353 (6), 505–510, 2015.
  • [16] M. Raza and S.N. Malik, Upper bound of the third Hankel determinant for a class of analytic functions related with with the lemniscate of Bernoulli, J. Inequal. Appl. (2013), art. 412, 2013.
  • [17] J. Sokól, On application of certain sufficient condition for starlikeness, J. Math. Appl. 30, 40–53, 2008.
  • [18] J. Sokól, Radius problem in the class $\mathcal{SL}^{\ast }$, Appl. Math. Comput. 214, 569–573, 2009.
  • [19] J. Sokól, Coefficient estimates in a class of strongly starlike functions, Kyungpook Math. J. 49, 349–353, 2009.
  • [20] J. Sokól and D.K. Thomas, Further results on a class of starlike functions related to the Bernoulli lemniscate, Houston J. Math. 44, 83–95, 2018.
  • [21] J. Sokól and J. Stankiewicz, Radius of convexity of some subclasses of strongly starlike functions, Folia Scient. Univ. Tech. Resoviensis, 147, 101–105, 1996.
There are 21 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

M. Arif 0000-0003-1484-7643

Sadaf Umar This is me 0000-0002-4455-3761

Mohsan Raza 0000-0001-7466-7930

Teodor Bulboaca 0000-0001-8026-218X

Muhammad Umar Farooq This is me 0000-0002-4836-0123

Hasan Khan This is me 0000-0001-6417-1181

Publication Date October 6, 2020
Published in Issue Year 2020

Cite

APA Arif, M., Umar, S., Raza, M., Bulboaca, T., et al. (2020). On fourth Hankel determinant for functions associated with Bernoulli’s lemniscate. Hacettepe Journal of Mathematics and Statistics, 49(5), 1777-1787. https://doi.org/10.15672/hujms.535246
AMA Arif M, Umar S, Raza M, Bulboaca T, Farooq MU, Khan H. On fourth Hankel determinant for functions associated with Bernoulli’s lemniscate. Hacettepe Journal of Mathematics and Statistics. October 2020;49(5):1777-1787. doi:10.15672/hujms.535246
Chicago Arif, M., Sadaf Umar, Mohsan Raza, Teodor Bulboaca, Muhammad Umar Farooq, and Hasan Khan. “On Fourth Hankel Determinant for Functions Associated With Bernoulli’s Lemniscate”. Hacettepe Journal of Mathematics and Statistics 49, no. 5 (October 2020): 1777-87. https://doi.org/10.15672/hujms.535246.
EndNote Arif M, Umar S, Raza M, Bulboaca T, Farooq MU, Khan H (October 1, 2020) On fourth Hankel determinant for functions associated with Bernoulli’s lemniscate. Hacettepe Journal of Mathematics and Statistics 49 5 1777–1787.
IEEE M. Arif, S. Umar, M. Raza, T. Bulboaca, M. U. Farooq, and H. Khan, “On fourth Hankel determinant for functions associated with Bernoulli’s lemniscate”, Hacettepe Journal of Mathematics and Statistics, vol. 49, no. 5, pp. 1777–1787, 2020, doi: 10.15672/hujms.535246.
ISNAD Arif, M. et al. “On Fourth Hankel Determinant for Functions Associated With Bernoulli’s Lemniscate”. Hacettepe Journal of Mathematics and Statistics 49/5 (October 2020), 1777-1787. https://doi.org/10.15672/hujms.535246.
JAMA Arif M, Umar S, Raza M, Bulboaca T, Farooq MU, Khan H. On fourth Hankel determinant for functions associated with Bernoulli’s lemniscate. Hacettepe Journal of Mathematics and Statistics. 2020;49:1777–1787.
MLA Arif, M. et al. “On Fourth Hankel Determinant for Functions Associated With Bernoulli’s Lemniscate”. Hacettepe Journal of Mathematics and Statistics, vol. 49, no. 5, 2020, pp. 1777-8, doi:10.15672/hujms.535246.
Vancouver Arif M, Umar S, Raza M, Bulboaca T, Farooq MU, Khan H. On fourth Hankel determinant for functions associated with Bernoulli’s lemniscate. Hacettepe Journal of Mathematics and Statistics. 2020;49(5):1777-8.

Cited By