Research Article
BibTex RIS Cite

Year 2020, Volume: 49 Issue: 5, 1753 - 1760, 06.10.2020
https://doi.org/10.15672/hujms.552260

Abstract

References

  • [1] D. Bansal, M.K. Soni and A. Soni, Certain geometric properties of the modified Dini function, Anal. Math. Phys. 9, 1383–1392, 2019.
  • [2] Á. Baricz, E. Deniz and N. Yagmur, Close-to-convexity of normalized Dini functions, Math. Nachr. 289, 1721–1726, 2016.
  • [3] Á. Baricz, P.A. Kupán and R. Szász, The radius of starlikeness of normalized Bessel functions of the first kind, Proc. Amer. Math. Soc. 142 (6), 2019–2025, 2014.
  • [4] Á. Baricz, S. Ponnusamy and S. Singh, Modified Dini functions: monotonicity pat- terns and functional inequalities, Acta Math. Hungar. 149 (1), 120–142, 2016.
  • [5] Á. Baricz, E. Toklu and E. Kadioğlu, Radii of starlikeness and convexity of Wright functions, Math. Commun. 23 (1), 97–117, 2018.
  • [6] S.Z.H. Bukhari, J. Sokól and S. Zafar, Unified approach to starlike and convex func- tions involving convolution between analytic functions, Results Math. 73, Article num- ber: 30, 2018.
  • [7] M.U. Din, M. Raza, S. Hussain and M. Darus, Certain geometric properties of gen- eralized Dini functions, J. Funct. Spaces, 2018, Art. ID 2684023, 1–9, 2018.
  • [8] A.W. Goodman, On uniformly convex functions, Ann. Polon. Math. 56, 87–92, 1991.
  • [9] A.W. Goodman, On uniformly starlike functions, Ann. Polon. Math. 155, 364–370, 1991.
  • [10] S. Kanas and A. Wiśniowska, Conic regions and k-uniform convexity, J. Comput. Appl. Math. 105, 327–336, 1999.
  • [11] S. Kanas and A. Wiśniowska, Conic regions and k-starlike functions, Rev. Roumaine Math. Pures Appl. 45 (4), 647–657, 2000.
  • [12] J.K. Prajapat, Certain geometric properties of the Wright functions, Integral Trans- forms Spec. Funct. 26 (3), 203–212, 2015.
  • [13] D. Răducanu, Geometric properties of Mittag-Leffler functions, in: Models and The- ories in Social Systems, Studies in Systems, Decision and Control 79, 403–415, Springer, Cham, 2018.
  • [14] F. Rönning, On starlike functions associated with parabolic regions, Ann. Univ. Mariae Curie-Sklodowska Sect. A, 45, 117–122, 1991.
  • [15] F. Rönning, Uniformly convex functions and a corresponding class of starlike func- tions. Proc. Amer. Math. Soc. 1 (18), 189–196, 1993.
  • [16] S. Owa, M. Nunokawa, H. Saitoh and H.M. Srivastava, Close-to-convexity, starlike- ness and convexity of certain analytic functions, Appl. Math. Lett. 15, 63–69, 2002.
  • [17] S.K. Sahoo and N.L. Sharma, On a generalization of close-to-convex functions, Ann. Polon. Math. 113 (1), 93–108, 2015.

New properties of the generalized Dini function

Year 2020, Volume: 49 Issue: 5, 1753 - 1760, 06.10.2020
https://doi.org/10.15672/hujms.552260

Abstract

In this work we study some properties of the normalized form of generalized Dini function like close-to-convexity of some order and close-to-convex with respect to another convex function. Furthermore, we investigate sufficient conditions which these functions are uniformly $k$-starlike functions of complex order $b$ in the open unit disk, and some consequences of the main results are also presented.

****************************************************************************************************************************

References

  • [1] D. Bansal, M.K. Soni and A. Soni, Certain geometric properties of the modified Dini function, Anal. Math. Phys. 9, 1383–1392, 2019.
  • [2] Á. Baricz, E. Deniz and N. Yagmur, Close-to-convexity of normalized Dini functions, Math. Nachr. 289, 1721–1726, 2016.
  • [3] Á. Baricz, P.A. Kupán and R. Szász, The radius of starlikeness of normalized Bessel functions of the first kind, Proc. Amer. Math. Soc. 142 (6), 2019–2025, 2014.
  • [4] Á. Baricz, S. Ponnusamy and S. Singh, Modified Dini functions: monotonicity pat- terns and functional inequalities, Acta Math. Hungar. 149 (1), 120–142, 2016.
  • [5] Á. Baricz, E. Toklu and E. Kadioğlu, Radii of starlikeness and convexity of Wright functions, Math. Commun. 23 (1), 97–117, 2018.
  • [6] S.Z.H. Bukhari, J. Sokól and S. Zafar, Unified approach to starlike and convex func- tions involving convolution between analytic functions, Results Math. 73, Article num- ber: 30, 2018.
  • [7] M.U. Din, M. Raza, S. Hussain and M. Darus, Certain geometric properties of gen- eralized Dini functions, J. Funct. Spaces, 2018, Art. ID 2684023, 1–9, 2018.
  • [8] A.W. Goodman, On uniformly convex functions, Ann. Polon. Math. 56, 87–92, 1991.
  • [9] A.W. Goodman, On uniformly starlike functions, Ann. Polon. Math. 155, 364–370, 1991.
  • [10] S. Kanas and A. Wiśniowska, Conic regions and k-uniform convexity, J. Comput. Appl. Math. 105, 327–336, 1999.
  • [11] S. Kanas and A. Wiśniowska, Conic regions and k-starlike functions, Rev. Roumaine Math. Pures Appl. 45 (4), 647–657, 2000.
  • [12] J.K. Prajapat, Certain geometric properties of the Wright functions, Integral Trans- forms Spec. Funct. 26 (3), 203–212, 2015.
  • [13] D. Răducanu, Geometric properties of Mittag-Leffler functions, in: Models and The- ories in Social Systems, Studies in Systems, Decision and Control 79, 403–415, Springer, Cham, 2018.
  • [14] F. Rönning, On starlike functions associated with parabolic regions, Ann. Univ. Mariae Curie-Sklodowska Sect. A, 45, 117–122, 1991.
  • [15] F. Rönning, Uniformly convex functions and a corresponding class of starlike func- tions. Proc. Amer. Math. Soc. 1 (18), 189–196, 1993.
  • [16] S. Owa, M. Nunokawa, H. Saitoh and H.M. Srivastava, Close-to-convexity, starlike- ness and convexity of certain analytic functions, Appl. Math. Lett. 15, 63–69, 2002.
  • [17] S.K. Sahoo and N.L. Sharma, On a generalization of close-to-convex functions, Ann. Polon. Math. 113 (1), 93–108, 2015.
There are 17 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Article
Authors

Ebrahim Analouei Adegani 0000-0001-9176-3932

Teodor Bulboaca 0000-0001-8026-218X

Publication Date October 6, 2020
Published in Issue Year 2020 Volume: 49 Issue: 5

Cite

APA Analouei Adegani, E., & Bulboaca, T. (2020). New properties of the generalized Dini function. Hacettepe Journal of Mathematics and Statistics, 49(5), 1753-1760. https://doi.org/10.15672/hujms.552260
AMA Analouei Adegani E, Bulboaca T. New properties of the generalized Dini function. Hacettepe Journal of Mathematics and Statistics. October 2020;49(5):1753-1760. doi:10.15672/hujms.552260
Chicago Analouei Adegani, Ebrahim, and Teodor Bulboaca. “New Properties of the Generalized Dini Function”. Hacettepe Journal of Mathematics and Statistics 49, no. 5 (October 2020): 1753-60. https://doi.org/10.15672/hujms.552260.
EndNote Analouei Adegani E, Bulboaca T (October 1, 2020) New properties of the generalized Dini function. Hacettepe Journal of Mathematics and Statistics 49 5 1753–1760.
IEEE E. Analouei Adegani and T. Bulboaca, “New properties of the generalized Dini function”, Hacettepe Journal of Mathematics and Statistics, vol. 49, no. 5, pp. 1753–1760, 2020, doi: 10.15672/hujms.552260.
ISNAD Analouei Adegani, Ebrahim - Bulboaca, Teodor. “New Properties of the Generalized Dini Function”. Hacettepe Journal of Mathematics and Statistics 49/5 (October2020), 1753-1760. https://doi.org/10.15672/hujms.552260.
JAMA Analouei Adegani E, Bulboaca T. New properties of the generalized Dini function. Hacettepe Journal of Mathematics and Statistics. 2020;49:1753–1760.
MLA Analouei Adegani, Ebrahim and Teodor Bulboaca. “New Properties of the Generalized Dini Function”. Hacettepe Journal of Mathematics and Statistics, vol. 49, no. 5, 2020, pp. 1753-60, doi:10.15672/hujms.552260.
Vancouver Analouei Adegani E, Bulboaca T. New properties of the generalized Dini function. Hacettepe Journal of Mathematics and Statistics. 2020;49(5):1753-60.