Research Article
BibTex RIS Cite
Year 2021, , 14 - 23, 04.02.2021
https://doi.org/10.15672/hujms.558995

Abstract

References

  • [1] Z. Akyuz and S. Halici, On some combinatorial identities involving the terms of generalized Fibonacci and Lucas sequences, Hacet. J. Math. Stat. 42 (4), 431–435, 2013.
  • [2] H. Avron, Counting triangles in large graphs using randomized matrix trace estimation, Proceedings of Kdd-Ldmta’10, 2010.
  • [3] D.J. Karia, K.M. Patil and H.P. Singh, On the sum of powers of square matrices, Oper. Matrices 13 (1), 221–229, 2019.
  • [4] J.K. Merikoski, On the trace and the sum of elements of a matrix, Linear Algebra Appl. 60, 177–185, 1984.
  • [5] V.P. Pugačev, Application of the trace of a matrix to the calculation of its eigenvalues, Ž. Vyčisl. Mat. i Mat. Fiz. 5, 114–116, 1965.
  • [6] A.V. Zarelua, On congruences for the traces of powers of some matrices, Tr. Mat. Inst. Steklova, 263 (Geometriya, Topologiya i Matematicheskaya Fizika. I), 85–105, 2008.

On the trace of powers of square matrices

Year 2021, , 14 - 23, 04.02.2021
https://doi.org/10.15672/hujms.558995

Abstract

Using Cayley-Hamilton equation for matrices, we obtain a simple formula for trace of powers of a square matrix. The formula becomes simpler in particular cases. As a consequence, we also demonstrate the formula for trace of negative powers of a matrix.

References

  • [1] Z. Akyuz and S. Halici, On some combinatorial identities involving the terms of generalized Fibonacci and Lucas sequences, Hacet. J. Math. Stat. 42 (4), 431–435, 2013.
  • [2] H. Avron, Counting triangles in large graphs using randomized matrix trace estimation, Proceedings of Kdd-Ldmta’10, 2010.
  • [3] D.J. Karia, K.M. Patil and H.P. Singh, On the sum of powers of square matrices, Oper. Matrices 13 (1), 221–229, 2019.
  • [4] J.K. Merikoski, On the trace and the sum of elements of a matrix, Linear Algebra Appl. 60, 177–185, 1984.
  • [5] V.P. Pugačev, Application of the trace of a matrix to the calculation of its eigenvalues, Ž. Vyčisl. Mat. i Mat. Fiz. 5, 114–116, 1965.
  • [6] A.V. Zarelua, On congruences for the traces of powers of some matrices, Tr. Mat. Inst. Steklova, 263 (Geometriya, Topologiya i Matematicheskaya Fizika. I), 85–105, 2008.
There are 6 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Kailash Patil 0000-0002-9884-6914

Publication Date February 4, 2021
Published in Issue Year 2021

Cite

APA Patil, K. (2021). On the trace of powers of square matrices. Hacettepe Journal of Mathematics and Statistics, 50(1), 14-23. https://doi.org/10.15672/hujms.558995
AMA Patil K. On the trace of powers of square matrices. Hacettepe Journal of Mathematics and Statistics. February 2021;50(1):14-23. doi:10.15672/hujms.558995
Chicago Patil, Kailash. “On the Trace of Powers of Square Matrices”. Hacettepe Journal of Mathematics and Statistics 50, no. 1 (February 2021): 14-23. https://doi.org/10.15672/hujms.558995.
EndNote Patil K (February 1, 2021) On the trace of powers of square matrices. Hacettepe Journal of Mathematics and Statistics 50 1 14–23.
IEEE K. Patil, “On the trace of powers of square matrices”, Hacettepe Journal of Mathematics and Statistics, vol. 50, no. 1, pp. 14–23, 2021, doi: 10.15672/hujms.558995.
ISNAD Patil, Kailash. “On the Trace of Powers of Square Matrices”. Hacettepe Journal of Mathematics and Statistics 50/1 (February 2021), 14-23. https://doi.org/10.15672/hujms.558995.
JAMA Patil K. On the trace of powers of square matrices. Hacettepe Journal of Mathematics and Statistics. 2021;50:14–23.
MLA Patil, Kailash. “On the Trace of Powers of Square Matrices”. Hacettepe Journal of Mathematics and Statistics, vol. 50, no. 1, 2021, pp. 14-23, doi:10.15672/hujms.558995.
Vancouver Patil K. On the trace of powers of square matrices. Hacettepe Journal of Mathematics and Statistics. 2021;50(1):14-23.