Research Article
BibTex RIS Cite
Year 2020, , 1865 - 1884, 08.12.2020
https://doi.org/10.15672/hujms.575080

Abstract

References

  • [1] M. André, Homologie des algèbres commutatives, Die Grundlehren der Mathematischen Wissenchaften, 206 Springer-Verlag 1974.
  • [2] Z. Arvasi and T. Porter, Higher dimensional Peiffer elements in simplicial commutative algebras, Theory Appl. Categ., 3, No. 1, pp 1-23, 1997.
  • [3] Z. Arvasi and T. Porter, Freeness conditions for 2-crossed module of commutative algebras, Appl. Categ. Structures, 6, 455-471, 1998.
  • [4] Z. Arvasi and A. Odabaş, Computing 2-dimensional algebras: Crossed modules and Cat1-algebras, J. Algebra Appl. 15 (10), 1650185, 2016.
  • [5] T. Datuashvili and T. Pirashvili, On Co Homology of 2-Types and Crossed Modules, J. Algebra 244, 352-365, 2001.
  • [6] G. Ellis, Higher dimensional crossed modules of algebras, J. Pure Appl. Algebra 52, 277-282, 1988.
  • [7] G. Ellis, Crossed squares and combinatorial homotopy, Math. Z. 214, 93-110, 1993.
  • [8] E.D. Farjoun and K. Hess, Normal and co-normal maps in homotopy theory, Homology Homotopy Appl. 14, 1, 79-112, 2012.
  • [9] E.D. Farjoun and Y. Segev, Crossed modules as homotopy normal maps, Topology Appl. 157, 359-368, 2010.
  • [10] E.D. Farjoun and Y. Segev, Normal closure and injective normalizer of a group homomorphism, J. Algebra 423, 1010-1043, 2015.
  • [11] D. Guin-Waléry and J-L. Loday, Obsructioná l’excision en K-theories algébrique, In: Friedlander, E.M.,Stein, M.R.(eds.) Evanston conf. on algebraic K-Theory 1980, (Lecture Notes in Math., 854, 179-216), Springer, Berlin Heidelberg, 1981.
  • [12] L. Illusie, Complex cotangent et deformations I, II, Lecture Notes in Math. 239 1971, II: 283, Springer, 1972.
  • [13] T. Porter, Homology of commutative algebras and an invariant of Simis and Vasconceles, J. Algebra 99, 458-465, 1986.
  • [14] M. Prezma, Homotopy normal maps, Algebr. Geom. Topol. 12, 1211-1238, 2012.
  • [15] N.M. Shammu, Algebraic and categorical structure of category of crossed modules of algebras, University of Wales, PhD Thesis, 1992.
  • [16] J.H.C. Whitehead, Combinatorial homotopy II, Bull. Amer. Math. Soc. 55, 453-496, 1949.

Higher dimensional algebras as ideal maps

Year 2020, , 1865 - 1884, 08.12.2020
https://doi.org/10.15672/hujms.575080

Abstract

In this work, we explain the close relationship between an ideal map structure $S\rightarrow End_{R}(R)$ on a homomorphism of commutative $k$-algebras $R\rightarrow S$ and an ideal simplicial algebra structure on the associated bar construction $Bar(S,R)$. We also explain this structure for crossed squares of algebras.

References

  • [1] M. André, Homologie des algèbres commutatives, Die Grundlehren der Mathematischen Wissenchaften, 206 Springer-Verlag 1974.
  • [2] Z. Arvasi and T. Porter, Higher dimensional Peiffer elements in simplicial commutative algebras, Theory Appl. Categ., 3, No. 1, pp 1-23, 1997.
  • [3] Z. Arvasi and T. Porter, Freeness conditions for 2-crossed module of commutative algebras, Appl. Categ. Structures, 6, 455-471, 1998.
  • [4] Z. Arvasi and A. Odabaş, Computing 2-dimensional algebras: Crossed modules and Cat1-algebras, J. Algebra Appl. 15 (10), 1650185, 2016.
  • [5] T. Datuashvili and T. Pirashvili, On Co Homology of 2-Types and Crossed Modules, J. Algebra 244, 352-365, 2001.
  • [6] G. Ellis, Higher dimensional crossed modules of algebras, J. Pure Appl. Algebra 52, 277-282, 1988.
  • [7] G. Ellis, Crossed squares and combinatorial homotopy, Math. Z. 214, 93-110, 1993.
  • [8] E.D. Farjoun and K. Hess, Normal and co-normal maps in homotopy theory, Homology Homotopy Appl. 14, 1, 79-112, 2012.
  • [9] E.D. Farjoun and Y. Segev, Crossed modules as homotopy normal maps, Topology Appl. 157, 359-368, 2010.
  • [10] E.D. Farjoun and Y. Segev, Normal closure and injective normalizer of a group homomorphism, J. Algebra 423, 1010-1043, 2015.
  • [11] D. Guin-Waléry and J-L. Loday, Obsructioná l’excision en K-theories algébrique, In: Friedlander, E.M.,Stein, M.R.(eds.) Evanston conf. on algebraic K-Theory 1980, (Lecture Notes in Math., 854, 179-216), Springer, Berlin Heidelberg, 1981.
  • [12] L. Illusie, Complex cotangent et deformations I, II, Lecture Notes in Math. 239 1971, II: 283, Springer, 1972.
  • [13] T. Porter, Homology of commutative algebras and an invariant of Simis and Vasconceles, J. Algebra 99, 458-465, 1986.
  • [14] M. Prezma, Homotopy normal maps, Algebr. Geom. Topol. 12, 1211-1238, 2012.
  • [15] N.M. Shammu, Algebraic and categorical structure of category of crossed modules of algebras, University of Wales, PhD Thesis, 1992.
  • [16] J.H.C. Whitehead, Combinatorial homotopy II, Bull. Amer. Math. Soc. 55, 453-496, 1949.
There are 16 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Alper Odabas 0000-0002-4361-3056

Erdal Ulualan 0000-0002-4823-8267

Publication Date December 8, 2020
Published in Issue Year 2020

Cite

APA Odabas, A., & Ulualan, E. (2020). Higher dimensional algebras as ideal maps. Hacettepe Journal of Mathematics and Statistics, 49(6), 1865-1884. https://doi.org/10.15672/hujms.575080
AMA Odabas A, Ulualan E. Higher dimensional algebras as ideal maps. Hacettepe Journal of Mathematics and Statistics. December 2020;49(6):1865-1884. doi:10.15672/hujms.575080
Chicago Odabas, Alper, and Erdal Ulualan. “Higher Dimensional Algebras As Ideal Maps”. Hacettepe Journal of Mathematics and Statistics 49, no. 6 (December 2020): 1865-84. https://doi.org/10.15672/hujms.575080.
EndNote Odabas A, Ulualan E (December 1, 2020) Higher dimensional algebras as ideal maps. Hacettepe Journal of Mathematics and Statistics 49 6 1865–1884.
IEEE A. Odabas and E. Ulualan, “Higher dimensional algebras as ideal maps”, Hacettepe Journal of Mathematics and Statistics, vol. 49, no. 6, pp. 1865–1884, 2020, doi: 10.15672/hujms.575080.
ISNAD Odabas, Alper - Ulualan, Erdal. “Higher Dimensional Algebras As Ideal Maps”. Hacettepe Journal of Mathematics and Statistics 49/6 (December 2020), 1865-1884. https://doi.org/10.15672/hujms.575080.
JAMA Odabas A, Ulualan E. Higher dimensional algebras as ideal maps. Hacettepe Journal of Mathematics and Statistics. 2020;49:1865–1884.
MLA Odabas, Alper and Erdal Ulualan. “Higher Dimensional Algebras As Ideal Maps”. Hacettepe Journal of Mathematics and Statistics, vol. 49, no. 6, 2020, pp. 1865-84, doi:10.15672/hujms.575080.
Vancouver Odabas A, Ulualan E. Higher dimensional algebras as ideal maps. Hacettepe Journal of Mathematics and Statistics. 2020;49(6):1865-84.