Constructions of helicoidal surfaces by using curvature functions in isotropic space
Year 2019,
Volume: 48 Issue: 4, 959 - 965, 08.08.2019
Dae Won Yoon
,
Jae Won Lee
,
Chul Woo Lee
Abstract
In the present paper, we study helicoidal surfaces in the three dimensional isotropic space $\Bbb I^3$ and construct helicoidal surfaces with prescribed Gaussian curvature or mean curvature given by smooth functions. Moreover, we give some examples of helicoidal surfaces with non-constant Gaussian curvature or mean curvature.
References
-
[1] M.E. Aydin, Classification results on surfaces in the isotropic 3-space, AKU J. Sci.
Eng. 16, 239-246, 2016.
-
[2] C. Baikoussis and T. Koufogiorgos, T., Helicoidal surfaces with prescribed mean or
Gaussian curvature, J. Geom. 63, 25-29, 1988.
-
[3] Chr.C. Beneki, G. Kaimakamis and B.J. Papantonios, Helicoidal surfaces in threedimensional
Minkowski space, J. Math. Anal. Appl. 275, 586-614, 2002.
-
[4] R. Caddeo, P. Piu and A. Ratto, Rotation surfaces in $H_3$ with constant Gauss
curvature, Bollettino U.M.I. 7, 341-357, 1996.
-
[5] C. Delaunay, Sur la surface de revolution dont la courbure moyenne est constante,
J. Math. Pures Appl. Series 1 6, 309-320, 1841.
-
[6] M.P. do Carmo and M. Dajczer, Helicoidal surfaces with constant mean curvature,
Tôhoku Math. J. 34 (3), 425-435, 1982.
-
[7] A. Gray, Modern differential geometry of curves and surfaces, CRC Press 1993.
-
[8] J.-I. Hano and K. Nomizu, Surfaces of revolution with constant mean curvature in
Lorentz-Minkowski space, Tôhoku Math. J. 36, 427-437, 1984.
-
[9] F. Ji and Z.H. Hou, Helicoidal surfaces under the cubic screw motion in Minkowski
3-space, J. Math. Anal. Appl. 318, 634-647, 2006.
-
[10] H. Pottmann, P. Grohs and N.J. Mitra, Laguerre minimal surfaces, isotropic geometry
and linear elasticity, Adv. Comput. Math. 31, 391-419, 2009.
-
[11] Ž.M. Šipuš, Translation surfaces of constant curvatures in a simply isotropic space,
Period. Math. Hungar. 68, 160-175, 2014.
-
[12] D.W. Yoon, D.-S. Kim, Y.H. Kim and J.W. Lee, Helicoidal surfaces with prescribed
curvature in $Nil_3$, International J. Math. 24, 1350107 (11 pages), 2013.
Year 2019,
Volume: 48 Issue: 4, 959 - 965, 08.08.2019
Dae Won Yoon
,
Jae Won Lee
,
Chul Woo Lee
References
-
[1] M.E. Aydin, Classification results on surfaces in the isotropic 3-space, AKU J. Sci.
Eng. 16, 239-246, 2016.
-
[2] C. Baikoussis and T. Koufogiorgos, T., Helicoidal surfaces with prescribed mean or
Gaussian curvature, J. Geom. 63, 25-29, 1988.
-
[3] Chr.C. Beneki, G. Kaimakamis and B.J. Papantonios, Helicoidal surfaces in threedimensional
Minkowski space, J. Math. Anal. Appl. 275, 586-614, 2002.
-
[4] R. Caddeo, P. Piu and A. Ratto, Rotation surfaces in $H_3$ with constant Gauss
curvature, Bollettino U.M.I. 7, 341-357, 1996.
-
[5] C. Delaunay, Sur la surface de revolution dont la courbure moyenne est constante,
J. Math. Pures Appl. Series 1 6, 309-320, 1841.
-
[6] M.P. do Carmo and M. Dajczer, Helicoidal surfaces with constant mean curvature,
Tôhoku Math. J. 34 (3), 425-435, 1982.
-
[7] A. Gray, Modern differential geometry of curves and surfaces, CRC Press 1993.
-
[8] J.-I. Hano and K. Nomizu, Surfaces of revolution with constant mean curvature in
Lorentz-Minkowski space, Tôhoku Math. J. 36, 427-437, 1984.
-
[9] F. Ji and Z.H. Hou, Helicoidal surfaces under the cubic screw motion in Minkowski
3-space, J. Math. Anal. Appl. 318, 634-647, 2006.
-
[10] H. Pottmann, P. Grohs and N.J. Mitra, Laguerre minimal surfaces, isotropic geometry
and linear elasticity, Adv. Comput. Math. 31, 391-419, 2009.
-
[11] Ž.M. Šipuš, Translation surfaces of constant curvatures in a simply isotropic space,
Period. Math. Hungar. 68, 160-175, 2014.
-
[12] D.W. Yoon, D.-S. Kim, Y.H. Kim and J.W. Lee, Helicoidal surfaces with prescribed
curvature in $Nil_3$, International J. Math. 24, 1350107 (11 pages), 2013.