Research Article
BibTex RIS Cite
Year 2021, , 180 - 187, 04.02.2021
https://doi.org/10.15672/hujms.621072

Abstract

References

  • [1] İ. Aktaş, On some properties of hyper-Bessel and related functions, TWMS J. App. and Eng. Math. 9 (1), 30–37, 2019.
  • [2] İ. Aktaş, Partial sums of Hyper-Bessel function with applications, Hacet. J. Math. Stat. 49 (1), 380–388, 2020.
  • [3] İ. Aktaş and Á. Baricz, Bounds for the radii of starlikeness of some q-Bessel functions, Results Math. 72 (1–2), 947–963, 2017.
  • [4] İ. Aktaş and H. Orhan, Bounds for the radii of convexity of some q-Bessel functions, Bull. Korean Math. Soc. 57 (2), 355–369, 2020.
  • [5] İ. Aktaş, Á. Baricz and H. Orhan, Bounds for the radii of starlikeness and convexity of some special functions, Turkish J. Math. 42 (1), 211–226, 2018.
  • [6] İ. Aktaş, Á. Baricz and S. Singh, Geometric and monotonic properties of hyper-Bessel functions, Ramanujan J. 51 (2), 275–295, 2020.
  • [7] İ. Aktaş, Á. Baricz and N. Yağmur, Bounds for the radii of univalence of some special functions, Math. Inequal. Appl. 20 (3), 825–843, 2017.
  • [8] Á. Baricz, Geometric properties of generalized Bessel functions, Publ. Math. Debrecen 73 (1–2), 155–178, 2008.
  • [9] Á. Baricz, Generalized Bessel Functions of the First Kind, Lecture Notes in Mathe- matics, Springer-Verlag, 2010.
  • [10] Á. Baricz and T.K. Pogány, Functional inequalities of modified Struve functions, Proc. Roy. Soc. Edinburgh Sect. A, 144 (5), 891–904, 2014.
  • [11] M. Biernacki and J. Krzyż, On the monotonity of certain functionals in the theory of analytic functions, Ann. Univ. Mariae Curie-Skłodowska Sect. A, 9, 135–147, 1955.
  • [12] R. Díaz and E. Pariguan, On hypergeometric functions and Pochhammer k-symbol, Divulgaciones Mathemáticas, 15 (2), 179–192, 2007.
  • [13] G.R. Mohtasami Borzadaran and H.A. Mohtasami Borzadaran, Log-concavity prop- erty for some well-known distributions, Surv. Math. Appl. 6, 203–219, 2011.
  • [14] S.R. Mondal and M.S. Akel, Differential equation and inequalities of the generalized k-Bessel functions, J. Inequal. Appl., 2018:175. doi: 10.1186/s13660-018-1772-1
  • [15] E. Toklu, Radii of starlikeness and convexity of generalized k-Bessel functions, arXiv:1902.09979, 2019.

On monotonic and logarithmic concavity properties of generalized $k$-Bessel function

Year 2021, , 180 - 187, 04.02.2021
https://doi.org/10.15672/hujms.621072

Abstract

In this study, our main objective is to determine some monotonic and log-concavity properties of generalized $k$-Bessel function by using its Hadamard product representation and some earlier results on power series. In addition, by using the relationships between Bessel-type special functions and some basic functions, we present some specific examples related to the monotonic and log-concavity properties of some trigonometric and hyperbolic functions.

References

  • [1] İ. Aktaş, On some properties of hyper-Bessel and related functions, TWMS J. App. and Eng. Math. 9 (1), 30–37, 2019.
  • [2] İ. Aktaş, Partial sums of Hyper-Bessel function with applications, Hacet. J. Math. Stat. 49 (1), 380–388, 2020.
  • [3] İ. Aktaş and Á. Baricz, Bounds for the radii of starlikeness of some q-Bessel functions, Results Math. 72 (1–2), 947–963, 2017.
  • [4] İ. Aktaş and H. Orhan, Bounds for the radii of convexity of some q-Bessel functions, Bull. Korean Math. Soc. 57 (2), 355–369, 2020.
  • [5] İ. Aktaş, Á. Baricz and H. Orhan, Bounds for the radii of starlikeness and convexity of some special functions, Turkish J. Math. 42 (1), 211–226, 2018.
  • [6] İ. Aktaş, Á. Baricz and S. Singh, Geometric and monotonic properties of hyper-Bessel functions, Ramanujan J. 51 (2), 275–295, 2020.
  • [7] İ. Aktaş, Á. Baricz and N. Yağmur, Bounds for the radii of univalence of some special functions, Math. Inequal. Appl. 20 (3), 825–843, 2017.
  • [8] Á. Baricz, Geometric properties of generalized Bessel functions, Publ. Math. Debrecen 73 (1–2), 155–178, 2008.
  • [9] Á. Baricz, Generalized Bessel Functions of the First Kind, Lecture Notes in Mathe- matics, Springer-Verlag, 2010.
  • [10] Á. Baricz and T.K. Pogány, Functional inequalities of modified Struve functions, Proc. Roy. Soc. Edinburgh Sect. A, 144 (5), 891–904, 2014.
  • [11] M. Biernacki and J. Krzyż, On the monotonity of certain functionals in the theory of analytic functions, Ann. Univ. Mariae Curie-Skłodowska Sect. A, 9, 135–147, 1955.
  • [12] R. Díaz and E. Pariguan, On hypergeometric functions and Pochhammer k-symbol, Divulgaciones Mathemáticas, 15 (2), 179–192, 2007.
  • [13] G.R. Mohtasami Borzadaran and H.A. Mohtasami Borzadaran, Log-concavity prop- erty for some well-known distributions, Surv. Math. Appl. 6, 203–219, 2011.
  • [14] S.R. Mondal and M.S. Akel, Differential equation and inequalities of the generalized k-Bessel functions, J. Inequal. Appl., 2018:175. doi: 10.1186/s13660-018-1772-1
  • [15] E. Toklu, Radii of starlikeness and convexity of generalized k-Bessel functions, arXiv:1902.09979, 2019.
There are 15 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

İbrahim Aktaş 0000-0003-4570-4485

Publication Date February 4, 2021
Published in Issue Year 2021

Cite

APA Aktaş, İ. (2021). On monotonic and logarithmic concavity properties of generalized $k$-Bessel function. Hacettepe Journal of Mathematics and Statistics, 50(1), 180-187. https://doi.org/10.15672/hujms.621072
AMA Aktaş İ. On monotonic and logarithmic concavity properties of generalized $k$-Bessel function. Hacettepe Journal of Mathematics and Statistics. February 2021;50(1):180-187. doi:10.15672/hujms.621072
Chicago Aktaş, İbrahim. “On Monotonic and Logarithmic Concavity Properties of Generalized $k$-Bessel Function”. Hacettepe Journal of Mathematics and Statistics 50, no. 1 (February 2021): 180-87. https://doi.org/10.15672/hujms.621072.
EndNote Aktaş İ (February 1, 2021) On monotonic and logarithmic concavity properties of generalized $k$-Bessel function. Hacettepe Journal of Mathematics and Statistics 50 1 180–187.
IEEE İ. Aktaş, “On monotonic and logarithmic concavity properties of generalized $k$-Bessel function”, Hacettepe Journal of Mathematics and Statistics, vol. 50, no. 1, pp. 180–187, 2021, doi: 10.15672/hujms.621072.
ISNAD Aktaş, İbrahim. “On Monotonic and Logarithmic Concavity Properties of Generalized $k$-Bessel Function”. Hacettepe Journal of Mathematics and Statistics 50/1 (February 2021), 180-187. https://doi.org/10.15672/hujms.621072.
JAMA Aktaş İ. On monotonic and logarithmic concavity properties of generalized $k$-Bessel function. Hacettepe Journal of Mathematics and Statistics. 2021;50:180–187.
MLA Aktaş, İbrahim. “On Monotonic and Logarithmic Concavity Properties of Generalized $k$-Bessel Function”. Hacettepe Journal of Mathematics and Statistics, vol. 50, no. 1, 2021, pp. 180-7, doi:10.15672/hujms.621072.
Vancouver Aktaş İ. On monotonic and logarithmic concavity properties of generalized $k$-Bessel function. Hacettepe Journal of Mathematics and Statistics. 2021;50(1):180-7.