Research Article
BibTex RIS Cite
Year 2020, , 1093 - 1106, 02.06.2020
https://doi.org/10.15672/hujms.647228

Abstract

References

  • [1] A. Ahmad, M. Bača, M. Lascsáková and A. Semaničová–Feňovčíková, Super magic and antimagic labelings of disjoint union of plane graphs, Sci. Int. 24 (1), 21–25, 2012.
  • [2] S. Arumugam, M. Miller, O. Phanalasy and J. Ryan, Antimagic labeling of generalized pyramid graphs, Acta Math. Sinica - English Series, 30, 283–290, 2014.
  • [3] M. Bača, L. Brankovic and A. Semaničová-Feňovčíková, Labelings of plane graphs containing Hamilton path, Acta Math. Sinica - English Series, 27 (4), 701–714, 2011.
  • [4] M. Bača, Z. Kimáková, A. Semaničová-Feňovčíková and M.A. Umar, Tree-antimagicness of disconnected graphs, Mathematical Problems in Engineering, 2015, Article ID 504251, 1–4, 2015.
  • [5] M. Bača and M. Miller, Super edge-antimagic graphs: A wealth of problems and some solutions, Brown Walker Press, Boca Raton, Florida, 2008.
  • [6] M. Bača, M. Miller, O. Phanalasy and A. Semaničová-Feňovčíková, Super d-antimagic labelings of disconnected plane graphs, Acta Math. Sinica - English Series, 26 (12), 2283–2294, 2010.
  • [7] M. Bača, M. Miller, J. Ryan and A. Semaničová-Feňovčíková, On H-antimagicness of disconnected graphs, Bull. Aust. Math. Soc. 94 (2), 201–207, 2016.
  • [8] M. Bača, A. Ovais, A. Semaničová-Feňovčíková and M.A. Umar, Fans are cycleantimagic, Australas. J. Combin. 68 (1), 94–105, 2017.
  • [9] H. Enomoto, A.S. Lladó, T. Nakamigawa and G. Ringel, Super edge-magic graphs, SUT J. Math. 34, 105–109, 1998.
  • [10] A. Gutiérrez and A.S. Lladó, Magic coverings, J. Combin. Math. Combin. Comput. 55, 43–56, 2005.
  • [11] N. Inayah, A.N.M. Salman and R. Simanjuntak, On (a, d)-H-antimagic coverings of graphs, J. Combin. Math. Combin. Comput. 71, 273–281, 2009.
  • [12] N. Inayah, R. Simanjuntak, A.N.M. Salman and K.I.A. Syuhada, On (a, d)-Hantimagic total labelings for shackles of a connected graph H, Australasian J. Combin. 57, 127–138, 2013.
  • [13] P. Jeyanthi, N.T. Muthuraja, A. Semaničová-Feňovčíková and S.J. Dharshikha, More classes of super cycle-antimagic graphs, Australas. J. Combin. 67 (1), 46–64, 2017.
  • [14] A. Kotzig and A. Rosa, Magic valuations of finite graphs, Canad. Math. Bull. 13, 451–461, 1970.
  • [15] A. Lladó and J. Moragas, Cycle-magic graphs, Discrete Math. 307, 2925–2933, 2007.
  • [16] K.W. Lih, On magic and consecutive labelings of plane graphs, Utilitas Math. 24, 165–197, 1983.
  • [17] A.M. Marr and W.D. Wallis, Magic Graphs, Birkhäuser, New York, 2013.
  • [18] T.K. Maryati, A.N.M. Salman and E.T. Baskoro, Supermagic coverings of the disjoint union of graphs and amalgamations, Discrete Math. 313, 397–405, 2013.
  • [19] T.K. Maryati, A.N.M. Salman, E.T. Baskoro, J. Ryan and M. Miller, On Hsupermagic labelings for certain shackles and amalgamations of a connected graph, Utilitas Math. 83, 333–342, 2010.
  • [20] A.A.G. Ngurah, A.N.M. Salman and L. Susilowati, H-supermagic labelings of graphs, Discrete Math. 310, 1293–1300, 2010.
  • [21] A.N.M. Salman, A.A.G. Ngurah and N. Izzati, On (super)-edge-magic total labelings of subdivision of stars Sn, Utilitas Math. 81, 275–284, 2010.
  • [22] A. Semaničová–Feňovčíková, M. Bača, M. Lascsáková, M. Miller and J. Ryan, Wheels are cycle-antimagic, Electron. Notes Discrete Math. 48, 11–18, 2015.
  • [23] R. Simanjuntak, M. Miller and F. Bertault, Two new (a, d)-antimagic graph labelings, Proc. Eleventh Australas. Workshop Combin. Alg. (AWOCA), 179–189, 2000.

Ladders and fan graphs are cycle-antimagic

Year 2020, , 1093 - 1106, 02.06.2020
https://doi.org/10.15672/hujms.647228

Abstract

A simple graph $G=(V,E)$ admits an~$H$-covering if every edge in $E$ belongs to at least one subgraph of $G$ isomorphic to a given graph $H$. The graph $G$ admitting an $H$-covering is $(a,d)$-$H$-antimagic if there exists a~bijection $f:V\cup E\to\{1,2,\cdots,|V|+|E|\}$ such that, for all subgraphs $H'$ of $G$ isomorphic to $H$, the $H'$-weights, $wt_f(H')= \sum_{v\in V(H')} f(v) + \sum_{e\in E(H')} f(e)$, form an~arithmetic progression with the initial term $a$ and the common difference $d$. Such a labeling is called {\it super} if the smallest possible labels appear on the vertices. In this paper we prove the existence of super $(a,d)$-$H$-antimagic labelings of fan graphs and ladders for $H$ isomorphic to a cycle.

References

  • [1] A. Ahmad, M. Bača, M. Lascsáková and A. Semaničová–Feňovčíková, Super magic and antimagic labelings of disjoint union of plane graphs, Sci. Int. 24 (1), 21–25, 2012.
  • [2] S. Arumugam, M. Miller, O. Phanalasy and J. Ryan, Antimagic labeling of generalized pyramid graphs, Acta Math. Sinica - English Series, 30, 283–290, 2014.
  • [3] M. Bača, L. Brankovic and A. Semaničová-Feňovčíková, Labelings of plane graphs containing Hamilton path, Acta Math. Sinica - English Series, 27 (4), 701–714, 2011.
  • [4] M. Bača, Z. Kimáková, A. Semaničová-Feňovčíková and M.A. Umar, Tree-antimagicness of disconnected graphs, Mathematical Problems in Engineering, 2015, Article ID 504251, 1–4, 2015.
  • [5] M. Bača and M. Miller, Super edge-antimagic graphs: A wealth of problems and some solutions, Brown Walker Press, Boca Raton, Florida, 2008.
  • [6] M. Bača, M. Miller, O. Phanalasy and A. Semaničová-Feňovčíková, Super d-antimagic labelings of disconnected plane graphs, Acta Math. Sinica - English Series, 26 (12), 2283–2294, 2010.
  • [7] M. Bača, M. Miller, J. Ryan and A. Semaničová-Feňovčíková, On H-antimagicness of disconnected graphs, Bull. Aust. Math. Soc. 94 (2), 201–207, 2016.
  • [8] M. Bača, A. Ovais, A. Semaničová-Feňovčíková and M.A. Umar, Fans are cycleantimagic, Australas. J. Combin. 68 (1), 94–105, 2017.
  • [9] H. Enomoto, A.S. Lladó, T. Nakamigawa and G. Ringel, Super edge-magic graphs, SUT J. Math. 34, 105–109, 1998.
  • [10] A. Gutiérrez and A.S. Lladó, Magic coverings, J. Combin. Math. Combin. Comput. 55, 43–56, 2005.
  • [11] N. Inayah, A.N.M. Salman and R. Simanjuntak, On (a, d)-H-antimagic coverings of graphs, J. Combin. Math. Combin. Comput. 71, 273–281, 2009.
  • [12] N. Inayah, R. Simanjuntak, A.N.M. Salman and K.I.A. Syuhada, On (a, d)-Hantimagic total labelings for shackles of a connected graph H, Australasian J. Combin. 57, 127–138, 2013.
  • [13] P. Jeyanthi, N.T. Muthuraja, A. Semaničová-Feňovčíková and S.J. Dharshikha, More classes of super cycle-antimagic graphs, Australas. J. Combin. 67 (1), 46–64, 2017.
  • [14] A. Kotzig and A. Rosa, Magic valuations of finite graphs, Canad. Math. Bull. 13, 451–461, 1970.
  • [15] A. Lladó and J. Moragas, Cycle-magic graphs, Discrete Math. 307, 2925–2933, 2007.
  • [16] K.W. Lih, On magic and consecutive labelings of plane graphs, Utilitas Math. 24, 165–197, 1983.
  • [17] A.M. Marr and W.D. Wallis, Magic Graphs, Birkhäuser, New York, 2013.
  • [18] T.K. Maryati, A.N.M. Salman and E.T. Baskoro, Supermagic coverings of the disjoint union of graphs and amalgamations, Discrete Math. 313, 397–405, 2013.
  • [19] T.K. Maryati, A.N.M. Salman, E.T. Baskoro, J. Ryan and M. Miller, On Hsupermagic labelings for certain shackles and amalgamations of a connected graph, Utilitas Math. 83, 333–342, 2010.
  • [20] A.A.G. Ngurah, A.N.M. Salman and L. Susilowati, H-supermagic labelings of graphs, Discrete Math. 310, 1293–1300, 2010.
  • [21] A.N.M. Salman, A.A.G. Ngurah and N. Izzati, On (super)-edge-magic total labelings of subdivision of stars Sn, Utilitas Math. 81, 275–284, 2010.
  • [22] A. Semaničová–Feňovčíková, M. Bača, M. Lascsáková, M. Miller and J. Ryan, Wheels are cycle-antimagic, Electron. Notes Discrete Math. 48, 11–18, 2015.
  • [23] R. Simanjuntak, M. Miller and F. Bertault, Two new (a, d)-antimagic graph labelings, Proc. Eleventh Australas. Workshop Combin. Alg. (AWOCA), 179–189, 2000.
There are 23 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Martin Baca 0000-0002-5758-0347

P. Jeyanthi 0000-0003-4349-164X

Narayanaperumal Thillaiammal Muthuraja This is me 0000-0003-4243-0503

Pothukutti Nadar Selvagopal This is me 0000-0001-6717-9816

Andrea Fenovcıkova 0000-0002-8432-9836

Publication Date June 2, 2020
Published in Issue Year 2020

Cite

APA Baca, M., Jeyanthi, P., Thillaiammal Muthuraja, N., Selvagopal, P. N., et al. (2020). Ladders and fan graphs are cycle-antimagic. Hacettepe Journal of Mathematics and Statistics, 49(3), 1093-1106. https://doi.org/10.15672/hujms.647228
AMA Baca M, Jeyanthi P, Thillaiammal Muthuraja N, Selvagopal PN, Fenovcıkova A. Ladders and fan graphs are cycle-antimagic. Hacettepe Journal of Mathematics and Statistics. June 2020;49(3):1093-1106. doi:10.15672/hujms.647228
Chicago Baca, Martin, P. Jeyanthi, Narayanaperumal Thillaiammal Muthuraja, Pothukutti Nadar Selvagopal, and Andrea Fenovcıkova. “Ladders and Fan Graphs Are Cycle-Antimagic”. Hacettepe Journal of Mathematics and Statistics 49, no. 3 (June 2020): 1093-1106. https://doi.org/10.15672/hujms.647228.
EndNote Baca M, Jeyanthi P, Thillaiammal Muthuraja N, Selvagopal PN, Fenovcıkova A (June 1, 2020) Ladders and fan graphs are cycle-antimagic. Hacettepe Journal of Mathematics and Statistics 49 3 1093–1106.
IEEE M. Baca, P. Jeyanthi, N. Thillaiammal Muthuraja, P. N. Selvagopal, and A. Fenovcıkova, “Ladders and fan graphs are cycle-antimagic”, Hacettepe Journal of Mathematics and Statistics, vol. 49, no. 3, pp. 1093–1106, 2020, doi: 10.15672/hujms.647228.
ISNAD Baca, Martin et al. “Ladders and Fan Graphs Are Cycle-Antimagic”. Hacettepe Journal of Mathematics and Statistics 49/3 (June 2020), 1093-1106. https://doi.org/10.15672/hujms.647228.
JAMA Baca M, Jeyanthi P, Thillaiammal Muthuraja N, Selvagopal PN, Fenovcıkova A. Ladders and fan graphs are cycle-antimagic. Hacettepe Journal of Mathematics and Statistics. 2020;49:1093–1106.
MLA Baca, Martin et al. “Ladders and Fan Graphs Are Cycle-Antimagic”. Hacettepe Journal of Mathematics and Statistics, vol. 49, no. 3, 2020, pp. 1093-06, doi:10.15672/hujms.647228.
Vancouver Baca M, Jeyanthi P, Thillaiammal Muthuraja N, Selvagopal PN, Fenovcıkova A. Ladders and fan graphs are cycle-antimagic. Hacettepe Journal of Mathematics and Statistics. 2020;49(3):1093-106.