Research Article
BibTex RIS Cite
Year 2021, , 678 - 691, 07.06.2021
https://doi.org/10.15672/hujms.663262

Abstract

References

  • [1] S.C. Arora and R. Batra, Generalized slant Toeplitz operators on $H^2$, Math. Nachr. 278 (4), 347-355, 2005.
  • [2] G. Datt and N. Ohri, Properties of slant Toeplitz operators on the torus, Malays. J. Math. Sci. 12, (2), 195-206, 2018.
  • [3] G. Datt and S.K. Pandey, Slant Toeplitz operators on Lebesgue space of n-dimensional Torus, Hokkaido Math. J. 49 (3), 363-389, 2020.
  • [4] X. Ding, S. Sun and D. Zheng, Commuting Toeplitz operators on the bidisk, J. Funct. Anal. 263, 3333-3357, 2012.
  • [5] C. Gu and D. Zheng, The semi-commutator of Toeplitz operators on the bidisc, J. Operator Theory 38, 173-193, 1997.
  • [6] H. Guediri, Dual Toeplitz operators on the sphere, Acta Math. Sin. (Engl. Ser.) 19 (9), 1791-1808, 2013.
  • [7] M.C. Ho, Spectral properties of slant Toeplitz operators, Ph.D. thesis, Purdue- University, Indiana, 1996.
  • [8] M.C. Ho, Spectra of slant Toeplitz operators with continuous symbol, Michigan Math. J. 44, 157-166, 1997.
  • [9] Y.F. Lu and B. Zhang, Commuting Hankel and Toeplitz operators on the Hardy space of the bidisk, J. Math. Res. Exposition 30 (2), 205-216, 2010.
  • [10] V. Peller, Hankel operators and applications, Springer-Verlag, New York, 2003.
  • [11] W. Rudin, Function Theory in Polydisc, W.A. Benjamin Inc., New York-Amsterdam 1969.
  • [12] E.M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ. Press, Princeton, NJ, 1971.

Multivariate analogue of slant Toeplitz operators

Year 2021, , 678 - 691, 07.06.2021
https://doi.org/10.15672/hujms.663262

Abstract

This paper discusses several structural and fundamental properties of the $k^{th}$-order slant Toeplitz operators on the Lebesgue space of the $n$- torus $\mathbb{T}^n$, for integers $k\geq 2$ and $n\geq 1$. We obtain certain equivalent conditions for the commutativity and essential commutativity of these operators. In the last section, we deal with the spectrum of a $k^{th}$-order slant Toeplitz operator on $L^2(\mathbb{T}^n)$ and investigate the conditions for such an operator to be an isometry, hyponormal or normal.

References

  • [1] S.C. Arora and R. Batra, Generalized slant Toeplitz operators on $H^2$, Math. Nachr. 278 (4), 347-355, 2005.
  • [2] G. Datt and N. Ohri, Properties of slant Toeplitz operators on the torus, Malays. J. Math. Sci. 12, (2), 195-206, 2018.
  • [3] G. Datt and S.K. Pandey, Slant Toeplitz operators on Lebesgue space of n-dimensional Torus, Hokkaido Math. J. 49 (3), 363-389, 2020.
  • [4] X. Ding, S. Sun and D. Zheng, Commuting Toeplitz operators on the bidisk, J. Funct. Anal. 263, 3333-3357, 2012.
  • [5] C. Gu and D. Zheng, The semi-commutator of Toeplitz operators on the bidisc, J. Operator Theory 38, 173-193, 1997.
  • [6] H. Guediri, Dual Toeplitz operators on the sphere, Acta Math. Sin. (Engl. Ser.) 19 (9), 1791-1808, 2013.
  • [7] M.C. Ho, Spectral properties of slant Toeplitz operators, Ph.D. thesis, Purdue- University, Indiana, 1996.
  • [8] M.C. Ho, Spectra of slant Toeplitz operators with continuous symbol, Michigan Math. J. 44, 157-166, 1997.
  • [9] Y.F. Lu and B. Zhang, Commuting Hankel and Toeplitz operators on the Hardy space of the bidisk, J. Math. Res. Exposition 30 (2), 205-216, 2010.
  • [10] V. Peller, Hankel operators and applications, Springer-Verlag, New York, 2003.
  • [11] W. Rudin, Function Theory in Polydisc, W.A. Benjamin Inc., New York-Amsterdam 1969.
  • [12] E.M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ. Press, Princeton, NJ, 1971.
There are 12 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Gopal Datt 0000-0001-6513-4411

Shesh Pandey 0000-0001-9121-8838

Publication Date June 7, 2021
Published in Issue Year 2021

Cite

APA Datt, G., & Pandey, S. (2021). Multivariate analogue of slant Toeplitz operators. Hacettepe Journal of Mathematics and Statistics, 50(3), 678-691. https://doi.org/10.15672/hujms.663262
AMA Datt G, Pandey S. Multivariate analogue of slant Toeplitz operators. Hacettepe Journal of Mathematics and Statistics. June 2021;50(3):678-691. doi:10.15672/hujms.663262
Chicago Datt, Gopal, and Shesh Pandey. “Multivariate Analogue of Slant Toeplitz Operators”. Hacettepe Journal of Mathematics and Statistics 50, no. 3 (June 2021): 678-91. https://doi.org/10.15672/hujms.663262.
EndNote Datt G, Pandey S (June 1, 2021) Multivariate analogue of slant Toeplitz operators. Hacettepe Journal of Mathematics and Statistics 50 3 678–691.
IEEE G. Datt and S. Pandey, “Multivariate analogue of slant Toeplitz operators”, Hacettepe Journal of Mathematics and Statistics, vol. 50, no. 3, pp. 678–691, 2021, doi: 10.15672/hujms.663262.
ISNAD Datt, Gopal - Pandey, Shesh. “Multivariate Analogue of Slant Toeplitz Operators”. Hacettepe Journal of Mathematics and Statistics 50/3 (June 2021), 678-691. https://doi.org/10.15672/hujms.663262.
JAMA Datt G, Pandey S. Multivariate analogue of slant Toeplitz operators. Hacettepe Journal of Mathematics and Statistics. 2021;50:678–691.
MLA Datt, Gopal and Shesh Pandey. “Multivariate Analogue of Slant Toeplitz Operators”. Hacettepe Journal of Mathematics and Statistics, vol. 50, no. 3, 2021, pp. 678-91, doi:10.15672/hujms.663262.
Vancouver Datt G, Pandey S. Multivariate analogue of slant Toeplitz operators. Hacettepe Journal of Mathematics and Statistics. 2021;50(3):678-91.