Research Article
BibTex RIS Cite

Year 2021, Volume: 50 Issue: 2, 453 - 470, 11.04.2021
https://doi.org/10.15672/hujms.684042
https://izlik.org/JA68UY69DF

Abstract

References

  • [1] F. Al-Thukair, S. Singh and I. Zaguia, Maximal ring of quotients of an incidence algebra, Arch. Math. 80, 358–362, 2003.
  • [2] S. Esin, M. Kanuni and A. Koç, Characterization of some ring properties in incidence algebras, Comm. Algebra, 39 (10), 3836–3848, 2011.
  • [3] M. Kanuni, Dense ideals and maximal quotient rings of incidence algebras, Comm. Algebra, 31 (11), 5287–5304, 2003.
  • [4] T.Y. Lam, Lectures on Modules and Rings, Graduate Texts in Mathematics 189, New York-Berlin, Springer-Verlag, 1999.
  • [5] E. Spiegel, Essential ideals of incidence algebras, J. Austral. Math. Soc. (Series A), 68, 252–260, 2000.
  • [6] E. Spiegel and C.J. O’Donnell, Incidence Algebras, Monographs and Textbooks in Pure Appl. Math. 206, New York, Marcel Dekker, 1997.

The singular ideal and the socle of incidence rings

Year 2021, Volume: 50 Issue: 2, 453 - 470, 11.04.2021
https://doi.org/10.15672/hujms.684042
https://izlik.org/JA68UY69DF

Abstract

Let $R$ be a ring with identity and $I(X,R)$ be the incidence ring of a locally finite partially ordered set $X$ over $R.$ In this paper, we compute the socle and the singular ideal of the incidence ring for some $X$ in terms of the socle of $R$ and the singular ideal of $R$, respectively.

References

  • [1] F. Al-Thukair, S. Singh and I. Zaguia, Maximal ring of quotients of an incidence algebra, Arch. Math. 80, 358–362, 2003.
  • [2] S. Esin, M. Kanuni and A. Koç, Characterization of some ring properties in incidence algebras, Comm. Algebra, 39 (10), 3836–3848, 2011.
  • [3] M. Kanuni, Dense ideals and maximal quotient rings of incidence algebras, Comm. Algebra, 31 (11), 5287–5304, 2003.
  • [4] T.Y. Lam, Lectures on Modules and Rings, Graduate Texts in Mathematics 189, New York-Berlin, Springer-Verlag, 1999.
  • [5] E. Spiegel, Essential ideals of incidence algebras, J. Austral. Math. Soc. (Series A), 68, 252–260, 2000.
  • [6] E. Spiegel and C.J. O’Donnell, Incidence Algebras, Monographs and Textbooks in Pure Appl. Math. 206, New York, Marcel Dekker, 1997.
There are 6 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Article
Authors

Müge Kanuni Er 0000-0001-7436-039X

Özkay Özkan 0000-0001-6755-1497

Publication Date April 11, 2021
DOI https://doi.org/10.15672/hujms.684042
IZ https://izlik.org/JA68UY69DF
Published in Issue Year 2021 Volume: 50 Issue: 2

Cite

APA Kanuni Er, M., & Özkan, Ö. (2021). The singular ideal and the socle of incidence rings. Hacettepe Journal of Mathematics and Statistics, 50(2), 453-470. https://doi.org/10.15672/hujms.684042
AMA 1.Kanuni Er M, Özkan Ö. The singular ideal and the socle of incidence rings. Hacettepe Journal of Mathematics and Statistics. 2021;50(2):453-470. doi:10.15672/hujms.684042
Chicago Kanuni Er, Müge, and Özkay Özkan. 2021. “The Singular Ideal and the Socle of Incidence Rings”. Hacettepe Journal of Mathematics and Statistics 50 (2): 453-70. https://doi.org/10.15672/hujms.684042.
EndNote Kanuni Er M, Özkan Ö (April 1, 2021) The singular ideal and the socle of incidence rings. Hacettepe Journal of Mathematics and Statistics 50 2 453–470.
IEEE [1]M. Kanuni Er and Ö. Özkan, “The singular ideal and the socle of incidence rings”, Hacettepe Journal of Mathematics and Statistics, vol. 50, no. 2, pp. 453–470, Apr. 2021, doi: 10.15672/hujms.684042.
ISNAD Kanuni Er, Müge - Özkan, Özkay. “The Singular Ideal and the Socle of Incidence Rings”. Hacettepe Journal of Mathematics and Statistics 50/2 (April 1, 2021): 453-470. https://doi.org/10.15672/hujms.684042.
JAMA 1.Kanuni Er M, Özkan Ö. The singular ideal and the socle of incidence rings. Hacettepe Journal of Mathematics and Statistics. 2021;50:453–470.
MLA Kanuni Er, Müge, and Özkay Özkan. “The Singular Ideal and the Socle of Incidence Rings”. Hacettepe Journal of Mathematics and Statistics, vol. 50, no. 2, Apr. 2021, pp. 453-70, doi:10.15672/hujms.684042.
Vancouver 1.Kanuni Er M, Özkan Ö. The singular ideal and the socle of incidence rings. Hacettepe Journal of Mathematics and Statistics [Internet]. 2021 Apr. 1;50(2):453-70. Available from: https://izlik.org/JA68UY69DF