Research Article
BibTex RIS Cite
Year 2021, , 453 - 470, 11.04.2021
https://doi.org/10.15672/hujms.684042

Abstract

References

  • [1] F. Al-Thukair, S. Singh and I. Zaguia, Maximal ring of quotients of an incidence algebra, Arch. Math. 80, 358–362, 2003.
  • [2] S. Esin, M. Kanuni and A. Koç, Characterization of some ring properties in incidence algebras, Comm. Algebra, 39 (10), 3836–3848, 2011.
  • [3] M. Kanuni, Dense ideals and maximal quotient rings of incidence algebras, Comm. Algebra, 31 (11), 5287–5304, 2003.
  • [4] T.Y. Lam, Lectures on Modules and Rings, Graduate Texts in Mathematics 189, New York-Berlin, Springer-Verlag, 1999.
  • [5] E. Spiegel, Essential ideals of incidence algebras, J. Austral. Math. Soc. (Series A), 68, 252–260, 2000.
  • [6] E. Spiegel and C.J. O’Donnell, Incidence Algebras, Monographs and Textbooks in Pure Appl. Math. 206, New York, Marcel Dekker, 1997.

The singular ideal and the socle of incidence rings

Year 2021, , 453 - 470, 11.04.2021
https://doi.org/10.15672/hujms.684042

Abstract

Let $R$ be a ring with identity and $I(X,R)$ be the incidence ring of a locally finite partially ordered set $X$ over $R.$ In this paper, we compute the socle and the singular ideal of the incidence ring for some $X$ in terms of the socle of $R$ and the singular ideal of $R$, respectively.

References

  • [1] F. Al-Thukair, S. Singh and I. Zaguia, Maximal ring of quotients of an incidence algebra, Arch. Math. 80, 358–362, 2003.
  • [2] S. Esin, M. Kanuni and A. Koç, Characterization of some ring properties in incidence algebras, Comm. Algebra, 39 (10), 3836–3848, 2011.
  • [3] M. Kanuni, Dense ideals and maximal quotient rings of incidence algebras, Comm. Algebra, 31 (11), 5287–5304, 2003.
  • [4] T.Y. Lam, Lectures on Modules and Rings, Graduate Texts in Mathematics 189, New York-Berlin, Springer-Verlag, 1999.
  • [5] E. Spiegel, Essential ideals of incidence algebras, J. Austral. Math. Soc. (Series A), 68, 252–260, 2000.
  • [6] E. Spiegel and C.J. O’Donnell, Incidence Algebras, Monographs and Textbooks in Pure Appl. Math. 206, New York, Marcel Dekker, 1997.
There are 6 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Müge Kanuni Er 0000-0001-7436-039X

Özkay Özkan 0000-0001-6755-1497

Publication Date April 11, 2021
Published in Issue Year 2021

Cite

APA Kanuni Er, M., & Özkan, Ö. (2021). The singular ideal and the socle of incidence rings. Hacettepe Journal of Mathematics and Statistics, 50(2), 453-470. https://doi.org/10.15672/hujms.684042
AMA Kanuni Er M, Özkan Ö. The singular ideal and the socle of incidence rings. Hacettepe Journal of Mathematics and Statistics. April 2021;50(2):453-470. doi:10.15672/hujms.684042
Chicago Kanuni Er, Müge, and Özkay Özkan. “The Singular Ideal and the Socle of Incidence Rings”. Hacettepe Journal of Mathematics and Statistics 50, no. 2 (April 2021): 453-70. https://doi.org/10.15672/hujms.684042.
EndNote Kanuni Er M, Özkan Ö (April 1, 2021) The singular ideal and the socle of incidence rings. Hacettepe Journal of Mathematics and Statistics 50 2 453–470.
IEEE M. Kanuni Er and Ö. Özkan, “The singular ideal and the socle of incidence rings”, Hacettepe Journal of Mathematics and Statistics, vol. 50, no. 2, pp. 453–470, 2021, doi: 10.15672/hujms.684042.
ISNAD Kanuni Er, Müge - Özkan, Özkay. “The Singular Ideal and the Socle of Incidence Rings”. Hacettepe Journal of Mathematics and Statistics 50/2 (April 2021), 453-470. https://doi.org/10.15672/hujms.684042.
JAMA Kanuni Er M, Özkan Ö. The singular ideal and the socle of incidence rings. Hacettepe Journal of Mathematics and Statistics. 2021;50:453–470.
MLA Kanuni Er, Müge and Özkay Özkan. “The Singular Ideal and the Socle of Incidence Rings”. Hacettepe Journal of Mathematics and Statistics, vol. 50, no. 2, 2021, pp. 453-70, doi:10.15672/hujms.684042.
Vancouver Kanuni Er M, Özkan Ö. The singular ideal and the socle of incidence rings. Hacettepe Journal of Mathematics and Statistics. 2021;50(2):453-70.